

CONTRACT DELIVERABLE COVER SHEET

Project:	Cherrystone Dam 2A Rehabilitation Design	
Project Number:	22C21031.100	
Document Title:	Final Geotechnical Investigation Report	
Deliverable Type (Mark One):] Intermediate] Draft] Final	
X		
	Other	
	Specify below:	
	Final Geotechnical Investigation Report for Cherrystone Creek Watershed Dam No. 2A, Contract # 20220729, Pittsylvania County, VA	
	Walerenea Dam No. 2A, Contract # 20220720, Pittoyivania County, VA	
Due Date:	July 20, 2023	
Date of Review:	July 20, 2023	
Project Manager:	Maridee Romero-Graves	
Review Team Member(s):	Gerald Robblee, PE; Austin Spencer, PE; Maridee Romero-Graves, PE	
Project Manager:	07/20/2023 Signature Date	

FINAL GEOTECHNICAL INVESTIGATION REPORT

Cherrystone Creek Watershed Dam No. 2A Pittsylvania County Chatham, Virginia

Schnabel Reference # 22210031.100 July 20, 2023

FINAL GEOTECHNICAL INVESTIGATION REPORT

Cherrystone Creek Watershed Dam No. 2A Pittsylvania County Chatham, Virginia

Schnabel Reference # 22210031.100 July 20, 2023

Austin Spencer, PE VA Professional Engineering No. 0402060577

Schnabel Engineering, LLC 11A Oak Branch Drive, Greensboro, NC 27407 Phone (336) 274-9456 www.schnabel-eng.com

FINAL GEOTECHNICAL INVESTIGATION REPORT CHERRYSTONE CREEK WATERSHED DAM NO. 2A PITTSYLVANIA COUNTY CHATHAM, VIRGINIA

TABLE OF CONTENTS

1.0	INTR	INTRODUCTION1		
	1.1	Project Overview		
	1.2	Surface Geology and Physiography		
2.0	SUBS	SURFACE GEOLOGY1	1	
	2.1	Overview		
	2.2	Embankment and Foundation		
	2.3	Auxiliary Spillway		
	2.4	Borrow Area		
	2.5	Toe Drain		
	2.6	Water Supply		
3.0	LOG	S 1	8	
4.0	SOIL	S LABORATORY TESTING1	9	
5.0	INTERPRETATIONS AND CONCLUSIONS (FOR IN SERVICE USE ONLY)			
6.0	LIMIT	ATIONS	2	
7.0	REFERENCES		3	

LIST OF FIGURES

- Figure 1: Project Vicinity Map
- Figure 2: Soils Map
- Figure 3: Geologic Map
- Figure 4: Seismicity Map
- Figure 5: Boring Location Plan
- Figure 6: Geological Section

LIST OF TABLES

- Table 1:
 Summary of Boring Locations, Depths, and Termination Information
- Table 2:
 Summary of Water Level Measurements
- Table 3:
 Summary of Hydraulic Conductivity Testing Results in Rock and Soil

APPENDICES

- Appendix A: Selected 1967 As-Built Drawings
- Appendix B: Subsurface Exploration Data
- Appendix C: Piezometer Installation Sketches and Development Records
- Appendix D: Results of Hydraulic Conductivity Testing in Soil
- Appendix E: Results of Hydraulic Conductivity Testing in Rock
- Appendix F: Soil Laboratory Test Data

1.0 INTRODUCTION

1.1 Project Overview

1.1.1 General

This Geotechnical Investigation Report was prepared by **Schnabel Engineering, LLC** (Schnabel) in support of the Rehabilitation Design of Cherrystone Creek Watershed Dam No. 2A (Dam 2A). This report includes tables, figures, and appendices with relevant data collected during the investigation. The investigation was performed in accordance with the approved *Geotechnical Investigation Work Plan* (Work Plan) dated December 16, 2022. The organization of this report follows the Geological Investigation Report outline presented in NEH Part 631.0205(e) to the extent practical.

1.1.2 Site Location

Dam 2A is located approximately 2.7-miles northwest of Chatham, Virginia, on Roaring Fork Creek. The latitude and longitude of the approximate midpoint of the embankment centerline are 38.8473° N and 79.4327° W, respectively. A Project Vicinity Map is included as Figure 1. The downstream toe of the Dam 2A embankment can be accessed from a dirt road located at approximately 660 Cherrystone Lake Road. The auxiliary spillway and embankment crest for Dam 2A can be accessed from a dirt road located at about 1645 Cherrystone Lake Road. Both dirt roads will be on your left as you travel north on Cherrystone Lake Road.

To access the dam from the U.S. Post Office located in the Town of Chatham, head west on Depot Street / VA-57 for about 3 miles and then turn right on Cherrystone Lake Road / VA-793 and drive for 1.4 miles. The gravel road and gate access to the left abutment and the gate to access the toe of the dam are both located on the left side (west) of Cherrystone Lake Road before the intersection of Hodnetts Mill Road and Cherrystone Lake Road.

1.1.3 Elevation Datum and Terminology

Elevations for this project are in feet and referenced to the North American Vertical Datum of 1988 (NAVD88). The horizontal control is referenced to the North American Datum of 1983 (NAD83) Virginia State Plane – South Zone. The abbreviation "EL" represents elevation.

Descriptive nomenclature for dams is based upon one looking downstream. The terms "right" and "left" are used herein accordingly. The reservoir side is known as the upstream slope with the opposite side referred to as the downstream slope.

1.1.4 Objective and Scope of Services

The objective of our subsurface investigation was to characterize the materials and conditions in the dam and its foundation in support of development of the dam rehabilitation design. The information obtained during the investigation will be used to supplement the data from the 2016 geotechnical investigations and to support and refine the geotechnical engineering analyses required in accordance with Technical Release No. 210-60, Earth Dams and Reservoirs (USDA-NRCS, 2019). To accomplish this objective, we performed the following scope of services:

- Coordinated with Natural Resources Conservation Service (NRCS) and a drilling subcontractor to perform drilling and in situ testing,
- Drilled four borings and three auger probes,
- Installed two permanent open standpipe piezometers with one piezometer screened in the embankment and one piezometer screened in the foundation soils,
- Observed and logged the drilling of the borings and auger probes, and the installation of piezometers,
- Retained soil and rock samples from the borings,
- Measured ground water levels in the borings and piezometers,
- Performed rock permeability (packer) tests in the dam foundation bedrock,
- Performed soil permeability (slug) tests in piezometers installed in the dam embankment and foundation soils,
- Performed laboratory testing on selected soil and rock samples obtained from the test borings, and
- Prepared this Geotechnical Investigation Report.

These services were performed under the supervision of a Professional Engineer licensed in the Commonwealth of Virginia.

1.1.5 Site Description

Dam 2A is a zoned earthen embankment dam constructed along Roaring Fork about 600 feet upstream of its confluence with Cherrystone Creek and about 400 feet upstream of Cherrystone Lake Road (Route 793). The dam impounds an approximately 16.5-acre reservoir at normal pool, controlled by the low-stage weir at EL 674.5. The earthen embankment has a crest length of about 400 feet and a top width of 20 feet. The dam has a maximum design height of 60 feet and a downstream slope of 2.5 feet horizontal to 1 foot vertical (2.5H:1V). The upstream slope of the dam is 2.5H:1V above an approximately 10-foot-wide bench located at about EL 676 and 3H:1V below the bench. Both slopes appear to be generally uniform. A small slough was observed along the ditch at the downstream right abutment contact. This slough was also noted during our visual inspection of the dam performed on October 21, 2022 and reported in our Site Reconnaissance Letter Report dated November 22, 2022 (Schnabel, 2022). During our geotechnical investigation soft, wet soils were observed at the downstream toe of the embankment.

Based on survey information gathered in 2014 and provided by NRCS in September of 2022, the minimum crest elevation of the dam is approximately EL 706.8 which provides 32.7 feet of freeboard above the normal pool elevation. The principal spillway consists of a two-stage, Dx3D, reinforced concrete riser and a 36-inch diameter reinforced concrete conduit. The conduit extends beneath the dam, perpendicular to the dam baseline alignment at approximately Station 13+00, and outlets into a

riprap lined plunge pool before it discharges into Roaring Fork. The foundation trench drain includes two 8-inch diameter corrugated metal pipes (CMP), one on each side of the principal spillway conduit, which extend from each abutment along the toe of the dam and then turn and run along each side of the principal spillway conduit and outlet within the plunge pool.

The auxiliary spillway at Dam 2A is a vegetated earthen spillway located to the left of the dam's left abutment. The auxiliary spillway discharges across Cherrystone Lake Road into a natural drainage feature before it flows into Cherrystone Creek at about 600 feet upstream of the confluence between Cherrystone Creek and Roaring Fork Creek. The auxiliary spillway has a left to right bottom width of 200 feet, a 30-foot wide (upstream to downstream) control section at EL 699.8, and side slopes of 3H:1V. The constructed inlet or approach channel of the auxiliary spillway slopes from the control section back toward the reservoir at about a 2% grade. The auxiliary spillway constructed exit channel slopes approximately 3% downstream away from the control section and that slope increases significantly downstream of the constructed exit channel. Due to the existing site topography downstream of the auxiliary spillway, flows from the auxiliary spillway would likely concentrate in a low area/channel that is about 80 feet wide downstream of the constructed outlet channel. Based on conversations with Pittsylvania County (Sponsor) and the Town of Chatham (Sponsor), it is our understanding that the auxiliary spillway has never activated.

Cherrystone Dam 2A is classified as a high hazard dam by NRCS and the Virginia Department of Conservation and Recreation (VA DCR) Dam Safety.

1.1.6 Previous Subsurface Explorations

1965-1966 Investigation by US Soil Conservation Service (SCS)

Numerous test pits, test borings, and resistivitor surveys were performed across the site in 1966 to support the original design of the dam. Results and findings are summarized in the Geology Report dated December 1966, and the Design Report in the Embankment and Foundation Analysis dated July 1967. Test pit and test boring logs were shown on the 1967 As-Built Drawings. Select As-Built Drawings that include results of these investigations are included in Appendix A. In 1994, Congress changed SCS to NRCS to reflect the broadened scope of the agency.

2016 Investigation by GSFW Engineering JV (GSFW JV)

Four test borings were drilled in the embankment to support an evaluation of the existing embankment materials for the Plan- Environmental Assessment (Plan-EA). Eleven test borings were drilled in the auxiliary spillway channel and the proposed auxiliary spillway expansion area to support an evaluation of the existing auxiliary spillway integrity. Borings were advanced with hollow-stem augers and NQ2 rock coring. Sampling was performed at selected depths in the soil. Continuous sampling was performed in the rock. Results and findings of the 2016 investigation are summarized in the Geotechnical Data Report dated January 24, 2017.

1.1.7 2023 Geotechnical Investigation Program

Schnabel performed a geotechnical investigation and field-testing program between January 9 and January 26, 2023, to further characterize the subsurface conditions at the site in support of the rehabilitation design. This program included subsurface drilling, disturbed and undisturbed soil sampling,

rock coring, permeability testing, and laboratory testing. The investigation was generally performed in accordance with our Work Plan. Significant schedule delays were incurred due to unfavorable site conditions, weather delays, and subcontractor personnel and equipment issues. A field modification was made to the Work Plan due to the encountered site conditions. The piezometer planned in the offset boring B-651A was eliminated because groundwater was not encountered within the embankment materials in boring B-651. The subsurface investigation methods are presented in the subsections below, and the investigation results are discussed in Section 2.0.

Prior to beginning the subsurface exploration, Schnabel presented the proposed exploration and field-testing approach and procedures in the Work Plan. This plan was reviewed and approved by the NRCS and finalized on December 16, 2022.

Schnabel's drilling subcontractor, Connelly and Associates, Inc. (C&A) of Fredrick. Maryland performed subsurface drilling. Drilling was completed using a track-mounted Diedrich D-70 drill rig and a track-mounted Acker Rebel XL drill rig. The drilling, sampling, and in situ testing were performed using current, applicable ASTM procedures, as described below.

The approved geotechnical investigation program, including field modifications to the program approved by NRCS are summarized below:

- One boring located at the crest of the dam to target embankment Zones 1 and 2 embankment fill, and foundation materials (Boring B-51).
- One auger probe located at the crest of the dam to collect undisturbed samples and for piezometer installation (B-51A).
- One boring located at approximately the middle of the downstream slope (B-651) to characterize Zones 2 and 3 embankment fill, and foundation materials, to collect undisturbed samples, to determine depth to rock, and for piezometer installation.
- Two auger probes located at approximately the middle of the downstream slope to collect undisturbed samples (B-651A and B-651B). Installation of a piezometer in Zone 3 embankment fill materials was planned within auger probe B-651A. The piezometer was not installed due to the water table not being encountered in the embankment material during drilling.
- One boring located at the downstream toe (B-652) to characterize the foundation materials.
- One boring located on the upstream bench (B-751) of the dam to characterize Zone 2 embankment fill, foundation materials, and to determine depth to rock.

A borrow area investigation was not performed during the January 2023 investigation. Following the completion of the Preliminary Design, a desktop study and investigation of potential borrow sites may be performed if additional borrow sources are needed to complete the design.

Test borings are identified based on the following convention:

- Centerline of embankment: B-5x
- Downstream embankment slope and toe: B-65x
- Upstream embankment slope: B-75x

The locations, depths, and termination information for the borings are summarized in Table 1.

Schnabel personnel observed the drilling and sampling and performed the borehole logging. Additional Schnabel and NRCS off-site support personnel (assisting with investigation planning and response to field conditions) included experienced geotechnical engineers and professional geologists.

Soil drilling was performed using 3-¼ and 4-¼-inch inside diameter (ID) hollow-stem augers (HSAs). Soil samples were obtained with either a 2-inch outside diameter (OD) split-barrel sampler, or 3-inch ID Shelby tube sampler.

Auger Probes B-51A, B-651A and B-651B were generally performed by drilling with the HSAs without sampling, except for Shelby tube sampling at specific intervals, until auger refusal using 3-¼ or 4¼-inch ID HSAs. Sampling intervals and information on the piezometer installation and screen intervals in auger probes are included in the drilling logs and piezometer completion forms in Appendix B and Appendix C, respectively.

Borings in which rock coring was planned were performed using 4-¼-inch ID HSAs. Temporary HQ casing was installed through the HSAs to the refusal depth and seated several inches into the rock surface. Drilling was performed through the HSAs to protect the embankment and foundation materials from uncontrolled interactions with the drill fluid. Rock coring and sampling were performed using an NQ double-tube wireline system. Drillers circulated water between the barrels and across the bit face to provide cooling and to flush away cuttings.

Boring backfill material consisted of a cement/bentonite grout that was mixed at a ratio of about 30 gallons of water to one bag (94 pounds) of Type I/II Portland cement and about 25 pounds of bentonite powder. This material was selected to reduce the potential for vertical movement of water along the borehole sidewalls and to reduce the potential for settlement at the top of the test boring. The grout was placed by tremie pipe from the bottom of borings. After allowing time for the backfill materials to settle (typically one day or more), the test borings were topped off, as necessary, with additional grout or bentonite chips. Backfill methods for each test boring are shown on the test boring logs and borehole backfill records that are included in Appendix B.

Schnabel personnel logged the borings and described the materials using ASTM D2488 - Standard Practice for Description and Identification of Soils (Visual-Manual Procedure) and Schnabel's Descriptive Criteria for Rock (Appendix B). Rock Quality Designation (RQD) and Recovery (REC) for each rock core run were recorded prior to sample transport (ASTM D6032).

Appendix B includes additional details on subsurface exploration procedures, sampling protocols, soil identification, rock core descriptions, test boring logs, undisturbed sampling records, and rock core photographs.

C&A installed two permanent open-standpipe piezometers at the site. A third planned permanent piezometer, to be screened in the embankment material in B-651A, was eliminated because groundwater was not encountered within the embankment materials in boring B-651. One piezometer was installed in Boring B-51A in the core trench in Zone 1 embankment fill material, and one piezometer was installed in Boring B-651 in foundation soils beneath the embankment fill. Each piezometer was constructed with 2-inch diameter Schedule 40 PVC pipe. The piezometers had 10-ft (B-51A) and 5-ft (B-651) of 0.010-inch opening slotted well screen. The piezometers were developed by bailing until the observed water was

clear or at least 9 well volumes had been removed. Details of piezometer installation and development are included in Appendix C.

Schnabel field staff measured water levels in the test borings using an electronic water level meter. Water levels were typically measured several times in each boring, including during drilling, after completion of drilling, at the beginning and end of each day, and immediately prior to grouting. Water levels in permanent piezometers were measured multiple times after the completion of piezometer installation. Select water level observations are included on the test boring logs in Appendix B, and all water level observations are included in Table 2. Additional discussion on the water level observations is included in Section 2.

C&A performed the SPTs in soil using a 24-inch long, 2-inch OD split-spoon sampler to collect soil samples and to measure the relative penetration resistance of soils (ASTM D1586). Samples taken from the embankment and foundation were collected continuously during drilling. The number of blows required to drive the split-spoon sampler four consecutive 6-inch increments using a 140-pound hammer falling 30 inches was recorded. The SPT hammers on each drill rig were automatic-trip hammers. The SPT N-values, which are shown on the test boring logs in Appendix B, are defined as the sum of the second and third 6-inch blow count intervals. The SPT N-values in this report and logs are uncorrected field values. Additional details on the SPTs are provided in Appendix B.

Hydraulic conductivity testing of soil (slug testing) was completed in the piezometers in Boring B-51A and B-651. Slug tests included both falling head and rising head tests. Approximately 2.2 feet of what appeared to be silty material was observed in the bottom of the piezometer in B-651. The material was encountered at a depth of approximately 40.8 feet below ground surface (bgs) and could not be removed by the methods attempted while bailing the well. The slug testing was performed on the 3 foot (37.8 to 40.8 feet bgs) exposed portion of the piezometer screen interval in B-651. Permeability for B-651 was analyzed for both the 3-foot and 5-foot screen interval since flow could have occurred through the filter pack around the clogged portion of the piezometer screen. The calculated permeabilities for B-651 were $1.7x10^{-03}$ cm/sec (3-foot interval) and $1.3x10^{-03}$ cm/sec (5-foot interval). A summary of the results is included in Section 2. Additional details and test results are included in Appendix D.

Hydraulic conductivity testing in rock included packer testing in the crest and downstream toe borings. Methods for packer testing are presented and summarized in Section 2. Additional details and test results are included in Appendix E.

1.2 Surface Geology and Physiography

1.2.1 Physiographic Area

The project site is located in the Piedmont physiographic province, located in the central region of Virginia and is bounded by the Coastal Plain Province to the east and the Blue Ridge Mountains to the west. The Piedmont Province is about 40 to 175 miles wide and extends into adjacent states with elevations ranging from 300 feet above mean sea level at its eastern boundary to about 1,000 feet along its western margin. Remnants of ancient mountains that have resisted erosion are now scattered across the region and stand from 500 to 1,500 feet above the mean terrain. The topography of the Piedmont is characterized by gently rolling hills and valleys and close networks of perennial stream systems (Heath, 1984).

1.2.2 Topography

According to the April 2014 topographic survey performed by NRCS, the natural slopes of the left and right abutments of the dam generally range from approximately 2H:1V to 4H. The natural floodplain is about 400-ft wide downstream of the grading associated with the dam.

1.2.3 Geological Formations and Surficial Deposits

Soil Survey Mapping

The portion of the NRCS Soil Survey Map of Pittsylvania County and the City of Danville, Virginia, within the vicinity of the site is shown on Figure 2. According to this map, a large portion of the project site is located within the Cecil Series (C), particularly in the higher elevations. The Cecil Series sandy loam and sandy clay loam are residual soils formed from the chemical weathering of granitic and gneissic rocks. As shown on the Geologic Map of the site (Figure 3) the parent rocks in the area are granite (Ig), garnetiferous mica schist (fm), and biotite gneiss (fg). The Cecil sandy loam (4C) and the Cecil sandy clay loam (5C3) consist of 7 to 15% slopes, which are well-drained and found on hillslopes.

The Madison Series has been mapped along the edges of the reservoir. The Madison Series consists of well-drained soils found on hillslopes that are residuum from the chemical weathering of mixed mafic rocks. The Geologic Map of the site indicates that these rocks are likely biotite gneiss (fg), and garnetiferous mica schists (fm). The Madison Series soils are comprised of two units of fine sandy loam which are differentiated by slope, 25 to 45% for map unit 21E and 15 to 25% for map unit 21D.

Floodplain soils have been identified as Chenneby-Toccoa Complex soils with 0 to 2% slopes. These soils are alluvial loams and silty clay loams that are somewhat poorly drained. An additional soil type in the vicinity of the dam is Udorthents, loamy (map unit 39). Udorthents represent disturbed areas where upper layers of soils have been removed.

Regional Geology

The following geologic maps of the Pittsville, Chatham, and Danville Quadrangles, Virginia were referenced for the project site:

- Marr, J.D. (1984). Geologic Map of the Pittsville and Chatham Quadrangles, Virginia. Department of Conservation and Economic Development, Virginia Division of Mineral Resources, Publication 49, scale 1:24,000 (Figure 3).
- Henika, W.S. (2002). Geologic Map of the Virginia Portion of the Danville 30 X 60 minute quadrangle, Virginia Division of Mineral Resources, Publication 166, scale 1:100,000.

The underlying regional geology in the vicinity of the project is described below using geological formation names from the geological maps listed above. The regional geology consists of Proterozoic to Ordovician-aged metamorphic rocks with igneous intrusions. The rock formations shown in the vicinity of the site are listed below, from youngest to oldest.

• Diabase Dikes: Described as dark gray to black, fine to medium-grained rock with mineralogy consisting of plagioclase, clinopyroxene, olivine, hornblende, epidote, chlorite, and magnetite.

- Rich Acres Formation: This formation consists of Diorite and Gabbro (ra), described as dark gray to greenish-gray, non-foliated, medium to coarse-grained, porphyritic, present as sill-like to elongate intrusions.
- Leatherwood Granite: This formation consists of leucogneiss (lg) consisting of dikes, sills, and irregular-shaped plutons of light gray, coarse-grained, porphyritic rock composed of mineral assemblages that includes quartz, microcline, plagioclase, biotite, and muscovite.
- Fork Mountain Formation: This formation consists of two primary units and two subunits, listed below.
 - Primary Units
 - Upper garnetiferous mica schist (fm): described as light silvery gray, mediumgrained, strongly foliated, with mineralogy consisting of garnet, staurolite, and sillimanite.
 - Lower biotite gneiss (fg): described as light to dark gray, moderately foliated, medium to coarse-grained, with alternating quarto-feldspathic and dark biotite schist layers. Biotite schist layers are light to dark silvery dray and medium to coarse-grained with an abundance of biotite and muscovite.
 - Secondary (Interlayered) Units
 - Ferrugionous quartzite (fg): described as light to dark gray to tan, fine-grained, present as discontinuous lenses and beds.
 - Quartz-epidote fels (feg): described as light greenish-gray, present as lenses and boudins.

Site Geology

According to previous investigations and the regional geological maps, the Leatherwood Granite leucogneiss (Ig) unit has been mapped both upstream and downstream of the dam on the left abutment. Diabase has been mapped (Figure 3) along the Cherrystone Lake Road alignment on the right abutment and it appears that Cherrystone Creek generally follows the alignment of this diabase dike from north-northwest to south-southeast.

1.2.4 Structure

The rock units and geologic structure in the Piedmont generally trend northeast-southwest due to large scale tectonism. Conforming to regional trends, the Smith River Allochthon is structurally bound to the northwest and southeast. The Bowen's Creek Fault, located approximately 13 miles northwest of the site is a low angle thrust fault that serves as the divide between the Piedmont and Blue Ridge provinces (Henika, 2002). Approximately 5 miles to the southeast, the Smith River Allochthon is bound by the Chatham Fault Zone and the Brookneal Shear Zone (Marr, 1984 and Henika, 2002). These two interrelated structures divide the Smith River Allochthon from Triassic-aged rocks of the Danville Basin. The Chatham Fault Zone and Brookneal Shear Zone are comprised of a high-angled shear zone with intersecting normal faults (Marr, 1984). Near vertical diabase dikes of Triassic age cut across these rocks at a north/northwest-south/southeast orientation.

Aside from the major faults bounding the Smith River Allochthon, several other structures have been identified in the site vicinity (Henika, 2002). The Gretna Antiform has been identified about one mile northwest of the site. The structure consists of a northeast-southwest trending recumbent anticline. About one mile southeast of the site an unnamed recumbent syncline has been identified with the same general orientation (Henika, 2002).

Structural measurements taken by both Marr (1984) and Henika (2002) indicate a predominantly east dipping schistosity (i.e., geological foliation with medium to large-grained minerals in a preferred sheet-like orientation) with wide ranging dip angles.

1.2.5 Evidence of Landslides, Seepage, Springs, or Mining

No evidence of landslides, natural springs, or mining has been observed or documented at the site. The toe of the dam is wet and the source of water is likely due to seepage through and under the dam as well as abutment stormwater run-off.

1.2.6 Sediment and Erosion

An evaluation of reservoir sedimentation and erosion was not included in this geotechnical investigation. According to the Plan-EA prepared by NRCS and dated August 2019, there is adequate submerged sediment storage capacity to accommodate a 50-year service life after completion of the rehabilitation.

1.2.7 Downstream Channel Stability

An evaluation of the downstream channel was not included in this investigation. No changes in the hydraulic discharge characteristics of the structure are being considered. Based on the Site Reconnaissance Letter Report for Cherrystone Creek Watershed Dam No. 2A prepared by Schnabel and dated November 22, 2022, the plunge pool was observed to be in satisfactory condition and no riprap displacement or erosion was observed along the rim of the plunge pool. No obvious erosion or instability was noted along the banks of the downstream channel.

1.2.8 Seismicity

Virginia lies within the North American Plate, which encompasses both continental and oceanic sections. The seismicity at Dam 1 is typical of the Central and Eastern United States (CEUS). The CEUS is a stable, intraplate region that is not nearly as active as the Western United States (WUS) that borders a plate boundary; however, much less attenuation occurs with CEUS earthquakes compared to those in the WUS because of the thick, denser crust in the CEUS. Therefore, earthquakes of similar magnitude will impact a much larger region in the CEUS (USGS, 2018). A seismicity map is included as Figure 4.

Historically, earthquakes in Virginia have been more common in: (a) the Central Virginia Seismic Zone (CVSZ), which extends around Charlottesville and Richmond (Wheeler, 1998); and (b) the Giles County Seismic Zone (GCSZ), which is located between Radford and the West Virginia border (Bollinger, 1988). The current state of knowledge of seismic sources in Virginia and nearby regions is limited; consequently, the potential for earthquake occurrence is not associated with mapped faults but is quantified and associated with areas of relatively higher seismicity (e.g., CVSZ and GCSZ) or lower seismicity (e.g., Coastal Plain areas). In general, it is assumed that the entire Commonwealth is subject to earthquake occurrence.

One of the largest earthquakes in Virginia took place on May 31, 1897 in Pearisburg, Giles County. It had an estimated Richter magnitude (M) of M 5.8 and a moment magnitude (Mw) of 6.1. This event is the second largest recorded earthquake in the southeastern United States (Stover and Coffman, 1993). This event produced a foreshock on May 3, 1897 near Pulaski, Radford, and Roanoke, Virginia. The main shock of May 31, 1897 was felt over an approximately 280,000-square mile area, which extended from Georgia to Pennsylvania and from the Atlantic Coast to Indiana and Kentucky. Significant damage was caused near the epicenter, where a Modified Mercalli Intensity (MMI) of VIII was felt.

The most recent noteworthy earthquake in Virginia was the M 5.8 event on August 23, 2011. This event was the result of reverse faulting on a north or northeast-striking plane within the CVSZ. Moderately heavy damage (MMI VIII) occurred in a rural region of Louisa County southwest of the town of Mineral. Minor damage was reported as far away as Delaware, southeastern Pennsylvania, and southern New Jersey. The earthquake was felt throughout the eastern United States from central Georgia to central Maine and west to Detroit, Michigan, and Chicago, Illinois, and was also felt in many parts of southeastern Canada from Montreal to Windsor (USGS, 2023a).

A M 5.1 earthquake occurred near Sparta, North Carolina on August 9, 2020. This event was the result of oblique-reverse faulting in the upper crust of the North American Plate. The maximum intensity was Very strong (MMI VII). The earthquake was felt mainly in Virginia and North Carolina and some minor damage to structures was reported in Sparta, North Carolina. (USGS, 2023b).

2.0 SUBSURFACE GEOLOGY

2.1 Overview

Several geologic material strata have been identified at the site. The strata are described below to characterize the subsurface stratigraphy at the dam site. These informal, project-specific strata names have distinct characteristics that are identified based on visual descriptions, field testing, drilling observations, laboratory test results, and engineering properties. The selected strata delineations may not necessarily reflect actual stratifications or the extent or continuity of strata at the site, although an effort was made to recognize the depositional history of the site. Each stratum is listed below. The soil classifications noted in this report are visual-manual classifications. The strata and specific information for each borehole are presented on the borings logs in Appendix B. A boring location plan is included as Figure 5.

The subsurface materials encountered in the borings at the site are characterized as follows:

- Topsoil/Surficial Materials
- Fill material placed during construction of the dam (Stratum F)
- Alluvial material transported by the stream, and deposited in and near the former stream channel (possibly including some colluvial material deposited directly in the valley by gravity) (Stratum A)
- Residual soil formed from chemical weathering of in-place rock (Stratum B)
- Disintegrated Rock formed by the near-complete weathering of in-place rock, but still maintaining a relatively high density and the relic structure of the parent rock (Stratum C)
- Bedrock encountered below SPT refusal or auger refusal (Stratum D)

The characteristics of the geologic materials encountered in the test borings are discussed in the following sections. Detailed descriptions of these materials and strata designations are also included on the test boring logs in Appendix B. The Standard Penetration Test results (N-values) listed below and on the test borings logs are the values recorded in the field.

The test boring logs included in this report are considered final logs. The field classifications were revised, as applicable, based on laboratory test results. Select laboratory test results are also included on the final boring logs. The revised subsurface section of the embankment is included as Figure 6.

2.2 Embankment and Foundation

2.2.1 Test Borings and Auger Probes

Boring B-51 was drilled vertically from the embankment crest. The boring was drilled 65.7 feet through the embankment fill and then through the foundation soils 6.9 feet before encountering bedrock. The boring was then advanced 25.0 feet into rock for a total depth of 97.6 feet. In addition, one vertical auger probe, B-51A, was drilled to the right of B-51 for installation of an open standpipe piezometer in the embankment fill within the cutoff trench. A piezometer was installed in B-51A and was screened in the core trench materials from a depth of 52.8 to 62.8 feet.

Boring B-651 was drilled vertically at the middle of the downstream slope of the embankment. The boring was drilled 36.0 feet through the embankment fill and then 12.1 feet through the foundation soils before encountering bedrock. The total depth of the boring was 48.1 feet. A piezometer was installed in B-651

and screened within the foundation materials from a depth of 38.0 to 43.0 feet. In addition, two vertical auger probes, B-651A and B-651B were drilled to the right of B-651 for undisturbed sampling in the embankment fill materials.

Boring B-652 was drilled vertically at the downstream toe of the embankment. The boring was drilled through 6.0 feet of embankment fill and then 31.6 feet through the foundation soils before encountering bedrock. The boring was advanced 25.0 feet into rock. The total depth of the boring was 62.6 feet.

Boring B-751 was drilled vertically near the normal pool elevation on the upstream slope. The boring was drilled 33.0 feet through embankment fill and then 1.1 feet through foundation soils before encountering bedrock. The total depth of the boring was 34.1 feet.

2.2.2 Generalized Subsurface Stratigraphy

Fill (Strata F1 and F2)

These soils included fill placed for the embankment and cutoff trench. The As-Built Drawings (1967) show that the embankment fill was divided into 3 zones. A summary of the material requirements for each zone from the As-Builts is included in Table 2.1 below.

Embankment Zone	Material Requirements*	Compaction Requirement
Zone 1	"Inorganic silts and very fine sands (ML&MH) represented by TP 204 from 1.0' to 5.5' and TP 153 from 1.0' to 9.5' selected from the emergency spillway and Borrow Area B at the entrance to the emergency spillway."	Class A – Compact to 95% of ASTM D698 Method A at Optimum Moisture to +2% of Optimum moisture. Lift height = 9". Max Particle Size = 6"
Zone 2	"Silty sands (SM) represented by TP 207 from 5.0' to 19.0' and TP 206 from 5.4 to 10.3 selected from emergency spillway."	Class A – Compact to 95% of ASTM D698 Method A at -2 to +2% of Optimum Moisture. Lift height = 9". Max Particle Size = 6"
Zone 3	"Weathered mica phyllite (SM) from emergency spillway."	Class A – Compact to 95% of ASTM D698 Method A at -2 to +3% of Optimum Moisture. Lift height = 9". Max Particle Size = 6"

Table 2.1: As-Built Earth Fill Requirements

* The text within quotation marks is from the table on Sheet 8 of the As-Built Drawings. The term "emergency spillway" refers to the auxiliary spillway of the dam.

The crest borings were positioned to intersect Zones 1 and 2. The mid-slope boring was positioned to intersect Zones 2 and 3. Fill materials were encountered in all borings. The fill materials encountered in the 2023 borings were divided into two units based on the percent passing the No. 200 sieve from field estimates and laboratory testing.

F1 Fine-Grained Fill: Material with greater than or equal to 50% fines

This material based on field observations, quality assurance (QA) review of field classifications, and laboratory test results was classified as Silt (ML) and Lean Clay (CL) with varying amounts of sand and gravel (15 to 45% fine to coarse-grained sand and up to 25% fine to coarse-grained gravel). The material was typically grayish brown to reddish brown in color, moist to wet, low to medium plasticity, and

contained some rock fragments. This material was encountered in borings B-51, B-651, and B-751 within the embankment fill. Uncorrected SPT N-values ranged from 5 to 23 blows per foot (bpf) in these materials with an average of 12 bpf.

F2 Coarse-Grained Fill: Material with greater than or equal to 50% sand and/or gravel

This material based on field observations, QA review of field classifications, and laboratory test results was classified as Silty Sand (SM) and Clayey Sand (SC) (estimated 15 to 45% fines), Silty Gravel (GM) (estimated 15 to 25% fines) and Poorly Graded Sand with Silt (SP-SM) (5 to 10% fines). This material was varying shades of brown and gray, fine to coarse-grained sands and gravels, moist to wet, and contained rock fragments. Coarse-grained fill was encountered in all the borings performed at the site. All fill materials in the toe boring (B-652), were visually classified as coarse-grained. This material was encountered intermittently with strata F1 in the remaining borings. Uncorrected SPT N-values ranged from 2 to 34 blows per foot (bpf) in these materials with an average of 9 bpf.

Alluvium (Stratum A2)

Alluvial soils were encountered below the embankment fill soils in test borings B-651 and B-652. The alluvium soils were divided into two units based on the percent passing the No. 200 sieve from field estimates and laboratory testing.

A1 Fine-Grained Alluvium: Material with greater than or equal to 50% fines

A two-foot-thick layer of material was field classified as Silt (ML). Upon performance of QA review and based on the results of the laboratory testing the material was classified as Silty Sand (SM). No fine-grained alluvium soils were encountered at Dam 2A.

A2 Coarse-Grained Alluvium: Material with greater than or equal to 50% sand and/or gravel

This material based on field observations, QA review of field classifications, and laboratory test results was classified as Silty Sand (SM) that was moist to moist to wet and orangish brown and gray. The material consisted of predominately fine to coarse-grained sand with 15-45% fines. Coarse-grained alluvium was encountered beneath embankment soils and was 2 to 6 feet thick. The uncorrected SPT N-values for the coarse-grained alluvial soils ranged from 2 to 30 bpf with an average of 11 bpf.

Residual Soils (Stratum B2)

Residual soils were encountered beneath embankment fill or alluvium soils in all borings. The residual soils were divided into two units based on the percent passing the No. 200 sieve from field estimates and laboratory testing.

B1 Fine-Grained Residuum: Material with greater than or equal to 50% fines

No fine-grained residual soils were encountered at Dam 2A.

B2 Coarse-Grained Residuum: Material with greater than or equal to 50% sand and/or gravel

These materials were encountered in all the borings and based on field observations, QA review of field classifications, and laboratory test results were classified as Silty Sand (SM), Silty Gravel with Sand (GM), Poorly Graded Sand with Silt (SP-SM), Poorly Graded Gravel with Silt (GP-GM), and Well Graded Gravel with Silt (GW-GM). The material typically contained 5 to 45% fines with varying amounts of gravel, was moist to wet, and generally brown and gray. This stratum ranged from 1.1 feet to 10.0 feet thick. The uncorrected SPT N-values for the coarse-grained residual soils ranged from 15 to 57 bpf with an average of 35 bpf.

Disintegrated Rock (Stratum C)

The boundary between soil and rock is typically not sharply defined. A transitional zone of disintegrated rock material is normally found overlying bedrock and is a product of in-place weathering of the parent material. The material in this zone typically retains the texture and structure of the parent rock. Disintegrated Rock is defined as residual material with an SPT N-value between 60 blows per foot and refusal (50 blows for less than 1" of penetration).

These materials were encountered in all borings, except B-751, and based on field observations, QA review of field classifications, and laboratory test results were classified as Silty Sand (SM), Poorly Graded Sand with Silt (SP-SM), Poorly Graded Sand with Gravel (SP), and Silty Gravel (GM). The material exhibited relic rock structure. The material typically contained 5 to 45% fines and was moist to wet with varying amounts of brown and gray. In boring B-51 a 2 feet thick layer (70 feet to 72 feet) of residual soils was noted interbedded within the disintegrated rock. The disintegrated rock strata ranged from 2 feet to 15.6 feet thick.

Rock (Strata D1 and D2)

The rock units encountered in borings B-51 and B-652 consisted of schist and gneiss. The rock has been divided into two engineering geologic units based upon rock type, strength, weathering, and fracture spacing.

D1 Schist

Schist generally described as fresh to highly weathered, weak to very strong, highly to intensely fractured, and was strongly foliated. The color of the rock was observed to be light gray, dark gray, and black.

D2 Gneiss

Gneiss generally described as fresh to slightly weathered, strong to very strong, very slightly to moderately fractured, light and dark gray, and poorly to strongly foliated.

2.2.3 Hydrogeologic Conditions

Several water level readings were recorded in the open boreholes during the field investigation. Recorded water levels are presented in Table 2, and select water level measurements are shown on the test boring logs in Appendix B. The water level readings in the embankment borings were generally as expected (expected levels were based on the embankment geometry and normal headwater and tailwater elevations). Multiple water level readings were taken in the piezometers installed in offset auger probe B-51A and boring B-651 during the remaining field work. Reported water levels should not be considered globally representative. It is anticipated that the observed water levels could have been affected by drilling procedures and would be expected to fluctuate due to variations in precipitation, surface runoff, reservoir levels, and other factors.

Hydraulic conductivity testing (slug testing) of soil surrounding the screened section of piezometers B-51A and B-651 was performed to estimate the hydraulic conductivity of the different subsurface stratigraphy. The slug testing performed in B-51A estimated the hydraulic conductivity to be 6.4x10⁻⁵ cm/sec. The slug testing performed in B-651 estimated the hydraulic conductivity to be between 1.3x10⁻³ and 1.7x10⁻³ cm/sec. The fill (presumed to be the core trench) surrounding the screened interval as described in B-51A is predominantly a Clayey Sand (SC) underlain by a Silty Gravel (GM) and Lean Clay (CL) while the alluvial and disintegrated rock/residual materials surrounding the screen in B-651 (presumed to be foundation material) are described as a Sandy Silt (ML) underlain by a Poorly Graded Sand with Gravel (SP). These values estimated from slug testing are consistent with published values for a Clayey Sand (10⁻⁴ to 10⁻⁶ cm/sec), and a poorly graded sand (10⁻¹ to 10⁻³ cm/sec) (Fetter, 1988; Freeze and Cherry, 1979). Details of the hydraulic conductivity testing and test results are presented in Appendix D and summarized in Table 3. This method of testing provides an approximation of the in-situ hydraulic conductivity at the select location and variations are to be expected.

Hydraulic conductivity (packer) tests of rock were performed. Details of packer testing in rock and test results are presented in Appendix E and a summary of hydraulic conductivities are listed in Table 3. This test method provides an approximation of the in situ hydraulic conductivity at selected locations and variations are to be expected.

Calculations were performed to estimate the average hydraulic conductivity in each test section, in centimeters per second (cm/s), using the method described in the US Bureau of Reclamation (1995) and for transmissivity, in Lugeons, using the method described in Houlsby (1990). Hydraulic conductivity and transmissivity values for the test interval were typically selected from the pressure step that returned the highest value. Flow rates into test intervals at varied test pressures indicate subsurface conditions including, turbulent flow through fractures, washing out of fracture fill material, and filling or clogging of fractures during tests.

The field hydraulic conductivity values were calculated using the methods described above. The calculated transmissivity values were 3 and 15 Lugeons in boring B-652 and 55 and 92 Lugeons in Boring B-51. The maximum calculated transmissivity value of 92 Lugeons was recorded in a test performed in the rock section between 77.6 and 87.6 feet below the ground surface at B-51. Material encountered over this interval was described as slightly to moderately weathered, slightly to moderately fractured Gneiss (RQD from 31% to 100%).

2.3 Auxiliary Spillway

An investigation of the auxiliary spillway was excluded from this program. Eight borings (DH-225 to DH-231 and DH-235) were drilled in the auxiliary spillway during the 2016 investigation by GSFW JV. Based on the profiles included in the report the auxiliary spillway control section was located at approximately STA 7+00 to 7+30 along the centerline alignment. Borings DH-227, DH-228, and DH-225 were located at the toe of the right side slope at approximately STA 7+00, STA 8+40, and STA 9+70, respectively. Borings DH-231, DH-230 and DH-229 were located at the toe of the left side slope at approximately STA 7+00, STA 8+30, and STA 9+75, respectively. Boring DH-226 was located along the auxiliary spillway

centerline alignment at approximately STA 11+00. Boring DH-235 was located about 70 feet left of the auxiliary spillway centerline alignment at approximately STA 12+00. A summary of the generalized subsurface stratigraphy for the auxiliary spillway provided in the GSFW JV report (GSFW JV, 2017) is provided in Table 2.2 below.

Strata	Material Description and Strata details
	Stratum F1 "Cohesive Soil" was encountered in boring DH-235 from beneath the surface cover
	to a depth of 4.5 feet. The material consisted of Silty Sand (SM), fine to medium grained sand,
	slightly micaceous, medium plasticity. The samples were brown with mottles of black.
Fill	
	Stratum F2 "Cohesionless Soil" was encountered in boring DH-226 from beneath the surface
	cover to a depth of 6.7 feet. The material consisted of Silty Sand with gravel (SM), fine to
	coarse sand, slightly micaceous. The samples were predominately brown and orangish brown.
	Strata B1 "Cohesionless, N-value less than 30" and B2 "Cohesionless, N-value 30 to 50/6"
	were encountered in all borings except DH-235. The materials were encountered beneath the
	topsoil (DH-227, DH-229, DH-230, and DH-231) and Fill (DH-226) and B3 "Cohesive, N-value
	less than 30" (DH-225 and DH-228). The material consisted of Silty Sand (SM) and Silty Sand
	with Gravel, predominately fine to coarse sand, slightly micaceous, the samples were
	predominately orangish brown, reddish brown, and grayish brown. Layers of B1 and B2 soils
	were also encountered interbedded within C/D1 "Transition Zone" materials in DH-225, DH- 228, and DH-231.
Residual	220, and DH-231.
	Stratum B3 "Cohesive, N-value less than 30" were encountered in DH-225 and DH-228
	beneath topsoil. The material encountered in DH-225 and DH-228 consisted of Sandy Silt
	(ML), fine grained sand, medium plasticity and the samples were grayish brown and reddish
	orange. The B3 material was also encountered in DH-235 beneath Fill and interbedded with
	D2d "Diabase" and C/D1 "Transition Zone" materials. The material encountered in DH-235
	consisted of Elastic Silt (MH), fine grained sand, medium to high plasticity and the samples
	were orangish brown and brownish orange.
	According to the report stratum C/D1 "Transition Zone" is defined as materials that could be
	considered either "very dense" soil or "very soft rock or hard, soil-like material", as defined by
	NRCS. Stratum C/D1 soils were encountered in DH-225, DH-227, DH-228, DH-230, DH-231,
Transition	and DH-235. The material was classified as Silty Sand (SM) and Silty Sand with Gravel (SM),
Zone	fine to coarse sand, non-plastic, containing varying amounts of rock fragments exhibiting relic
	rock structure, and were generally reddish brown, grayish brown, and brown in color. This
	material was encountered beneath residual soils in each boring and was generally interlayered
	with residual soils and rock.
	Stratum D2 "Schist described as highly weathered, weak, highly to intensely fractured, grayish
Book	brown, and strongly foliated" was only encountered in DH-230 interlayered within C/D1 soils.
Rock	Stratum D2b "Diabase described as fresh, very strong, moderately fractured, greenish gray,
(Schist)	and non-foliated" was only encountered in DH-235 and was interpreted to be boulders of
	diabase within Elastic Silt (MH) formed from the weathering of the parent diabase material.
	diabase within Liastic on thin promised norm the weathering of the parent diabase material.

Table 2.	2: Summary of Auxiliary Spillway Subsurface Stratigraphy from GSFW JV Report

2.4 Borrow Area

A potential borrow area investigation was excluded from this program. The scope of a borrow area investigation program will be evaluated as needed later during the final design phases.

2.5 Toe Drain

Investigation of the existing toe drain was excluded from this program. Toe drain material was not encountered in the test borings. The existing toe drain system will be removed or abandoned in-place (by properly grouting the interior of the pipe drain system) and a new embankment drainage system will be installed as part of the rehabilitation design.

2.6 Water Supply

The reservoir is used by the Sponsors as a supplemental water supply to augment stream flow during periods of extended dry weather. Water is released from the reservoir through the primary spillway and picked up by the water treatment plant intake located downstream of the structure.

An evaluation of reservoir water quality was excluded from this program.

2.7 Wetlands

Wetlands delineation was performed for Cherrystone Dam 2A by Wetland Studies and Solutions, Inc. (WSSI). The results of that study are detailed in the Waters of the U.S (including Wetlands) Delineation for Cherrystone Creek Dam 2A report by WSSI dated December 8, 2022. According to the report wetlands were observed within the study area. The observed wetlands were not located within the preliminary limits of disturbance for the project.

3.0 LOGS

Boring logs, including select soils laboratory testing data, from the geotechnical investigation are provided in Appendix B.

4.0 LABORATORY TESTING PROGRAM

4.1 Overview

Schnabel performed laboratory tests, in general accordance with the Work Plan, on soil samples collected during the geotechnical investigation. The testing will aid in characterization of the embankment fill and foundation materials and provide data for use in the final design. The soils laboratory testing was performed by the Geotechnics of Raleigh, North Carolina certified laboratory in accordance with applicable ASTM standards. Rock laboratory testing was not performed due to the depth at which rock was encountered. The results of the soil laboratory testing are provided in Appendix F. Laboratory test results interpretations and conclusions, and a summary of test results will be provided separately in our Geotechnical Engineering Report.

4.2 Soils Laboratory Testing

The following soil laboratory tests were performed:

Index Testing

- 22 water content tests
- 13 Atterberg Limits tests
- 6 particle size distribution tests (with and without hydrometer)
- 6 specific gravity tests

Strength, Compressibility, and Dispersion Testing

- 3 three-specimen consolidated undrained triaxial compression (CU') tests with pore pressure measurements (on intact tube samples)
- 1 one-dimensional consolidation tests (on intact tube samples)
- 1 pinhole dispersion test

4.3 Assignment Revisions

The final totals of laboratory testing performed differs from the anticipated totals submitted in the Work Plan. The difference in the planned testing and the testing performed is due to the inability to obtain Shelby tubes for consolidation testing in the foundation materials and redistribution of laboratory testing budget to perform more materials classification testing.

4.4 Testing Standards

The laboratory tests were performed in accordance with the latest versions of the following ASTM standards, as appropriate:

- Moisture Content (ASTM D2216)
- Atterberg Limits (ASTM D4318)
- Particle Size Distribution Test without Hydrometer (ASTM D6913)
- Particle Size Distribution Test with Hydrometer (ASTM D7928)
- Specific Gravity (ASTM D854)
- Pinhole Dispersion (ASTM D4647, Method A)
- Consolidated-Undrained (CU') Triaxial Compression (ASTM D4767)
- One-Dimensional Incremental Stress Consolidation (ASTM D2435, Method A)

5.0 INTERPRETATIONS AND CONCLUSIONS (FOR IN SERVICE USE ONLY)

5.1 Embankment Geometry

Based on our subsurface investigation, we were able to generally confirm the geometry of the dam as shown on the As-Built Drawings. The As-Built Drawings indicate that the core trench should extend to the top of rock with a minimum bottom width of 30 feet. In boring B-51, we observed approximately 6.9-foot-thick layer of residual soil and disintegrated rock between the bottom of fill and the top of rock. The SPT N-values of the layer ranged from 28 bpf to 50/2" and the layer directly beneath the fill had an N-value of 49.

5.2 Embankment Materials

The 1967 "Soils Report" (USDA-SCS, 1967c) describes the embankment borrow materials planned for construction as Silt (ML), Elastic Silt (MH), and Silty Sand (SM). The encountered embankment soils were generally classified Sandy Silt (ML), Silty Sand (SM), and Clayey Sand (SC) with some Silty Gravel (GM), Poorly Graded Sand with Silt (SP-SM), and Sandy Lean Clay (CL). These observations generally agree with the soil types described in the Soils Report. The report recommended placement of the fine-grained materials (ML and MH) in the center section of the embankment to form an impervious core section and placement of SM materials in the outer sections to provide better drainage characteristics in the embankment. The fine-grained soils encountered at the site were generally observed in the center "core" section of the embankment. However, coarse-grained soils were also observed layered within the fine-grained soils in the center of the embankment.

5.3 Filter Compatibility

As discussed above, the existing toe drain was not encountered during our investigation or the 2016 investigation. Filter compatibility analyses of the existing drain material should reference the gradations shown on the record drawings. A new toe drain will be installed as a part of the rehabilitation design. The design of the filters and drains will be performed in accordance with NRCS design guidelines and will consider the soil gradations observed in the lab test results from this and previous investigations.

5.4 Seepage

We did not observe artesian conditions during our subsurface exploration. However, standing water and saturated soils were observed in the area downstream of the toe of the dam. No flow was observed from the existing toe drain outlets during our inspection or the geotechnical investigation. Seepage modeling will be performed to evaluate the embankment seepage with consideration given to the observed water levels and in-situ hydraulic conductivity testing results. A new toe drain designed to intercept, filter, and collect seepage will be included as part of the rehabilitation design.

6.0 LIMITATIONS

This report has been prepared to aid in the evaluation of this site and to assist in the design of the project. It is intended for use concerning this specific project. Actual subsurface conditions between borings may differ than those shown on soil profiles and sections.

We have endeavored to complete the services identified herein in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions as this project. No other representation, express or implied, is included or intended, and no warranty or guarantee is included or intended in this report or other instrument of service.

7.0 REFERENCES

Bollinger, G.A., and Wheeler, R.L. (1988). "The Giles County, Virginia Seismic Zone – Seismological Results and Geological Interpretations", USGS, Professional Paper 1355, Washington, D.C.

GSFW JV (2017). "Geotechnical Data Report, Cherrystone Creek Dam No. 2A." GSFW JV, January 24, 2017.

Heath, R.C. (1984). Ground-water Regions of the United States, USGS Water-Supply Paper 2242.

Henika, W.S. (2002). Geologic Map of the Virginia Portion of the Danville 30 X 60 minute quadrangle, Virginia Division of Mineral Resources, Publication 166, scale 1:100,000.

Marr, J.D. (1984). Geologic Map of the Pittsville and Chatham Quadrangles, Virginia. Department of Conservation and Economic Development, Virginia Division of Mineral Resources, Publication 49, scale 1:24,000.

Schnabel (2022). "Site Reconnaissance Letter Report for Cherrystone Creek Watershed Dam No. 2A." Schnabel Engineering, LLC, November 22, 2022.

Stover, C.W. and Coffman, J.L. (1993). "Seismicity of the United States, 1568-1989 (Revised),"U.S. Geological Survey Professional Paper 1527, United States Government Printing Office, Washington.

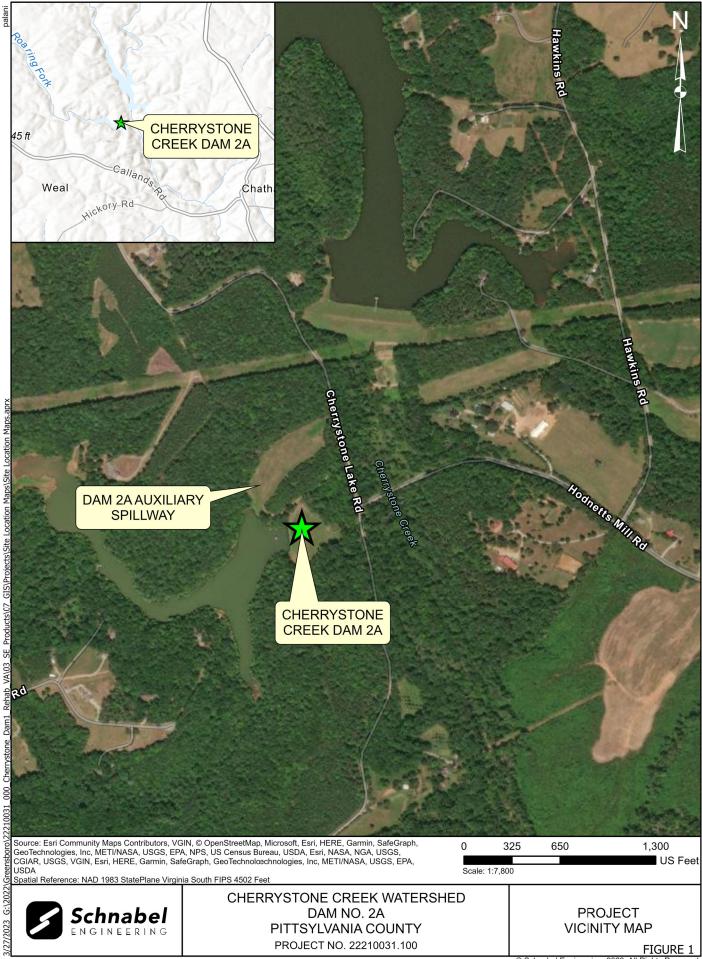
USDA-NRCS. (2019). "Final Supplemental Watershed Plan No. 3 and Environmental Assessment for the Rehabilitation of Floodwater Retarding Structure No. 2A (Roaring Fork Lake) of the Cherrystone Creek Watershed, Pittsylvania County, Virginia," U.S. Department of Agriculture Natural Resources Conservation Service, August 2019.

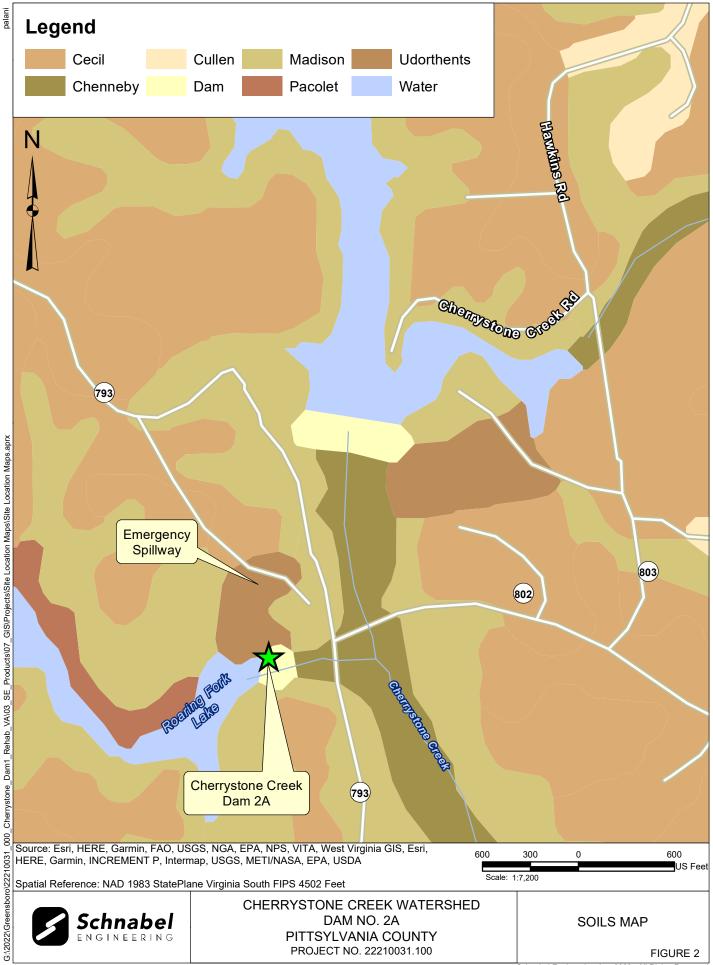
USDA-SCS (1967a). "Geology Report – Detailed Geologic Investigation of Dam Sites, Cherrystone Creek Dam No. 2A." Soil Conservation Service of the U.S. Department of Agriculture, January 1967.

USDA-SCS (1967b). "Cherrystone Creek Watershed, Dam No. 2A Roaring Fork, Pittsylvania County, Virginia – AS BUILT." Soil Conservation Service of the U.S. Department of Agriculture and Pittsylvania Soil and Water Conservation District, August 1967.

USDA-SCS (1967c). "ENG 22-5 – Virginia WP-08, Cherrystone Creek, Site No. 2 Memorandum." Soils Conservation Service of the U.S. Department of Agriculture, April 27, 1967.

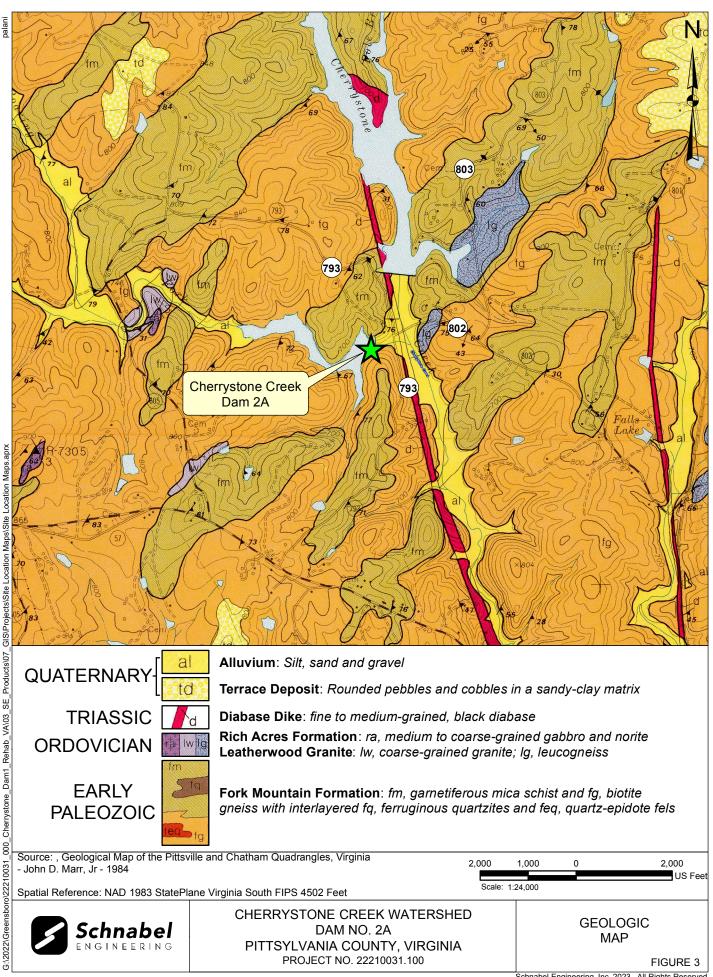
USGS (2018). *East vs West Coast Earthquakes.* United States Department of the Interior, United States Geological Survey. <u>https://www.usgs.gov/news/east-vs-west-coast-earthquakes</u>.

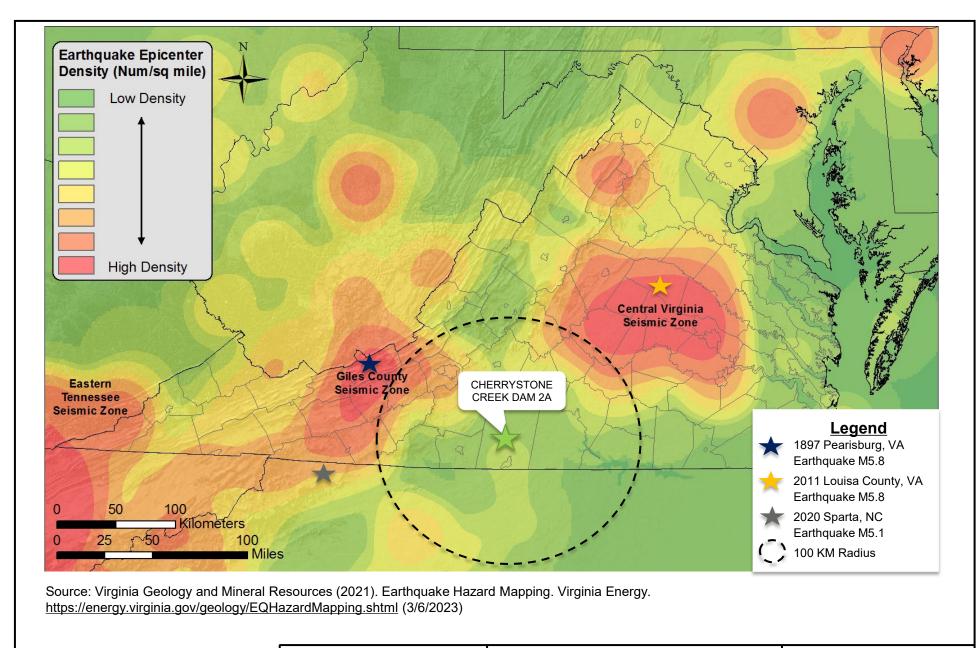

USGS (2023a). M5.8 - 11 km SSW of Mineral, Virginia, U.S. Department of the Interior, U.S. Geological Survey, <u>https://earthquake.usgs.gov/earthquakes/eventpage/se609212/executive</u>. (3/15/2023)


USGS (2023b) M5.1 – 4 km SE of Sparta, North Carolina, U.S. Department of the Interior, U.S. Geological Survey, <u>https://earthquake.usgs.gov/earthquakes/eventpage/se60324281/executive</u>. (3/15/2023)

Virginia Geology and Mineral Resources (2021). *Earthquake Hazard Mapping*. Virginia Energy. <u>https://energy.virginia.gov/geology/EQHazardMapping.shtml</u> (3/6/2023)

FIGURES

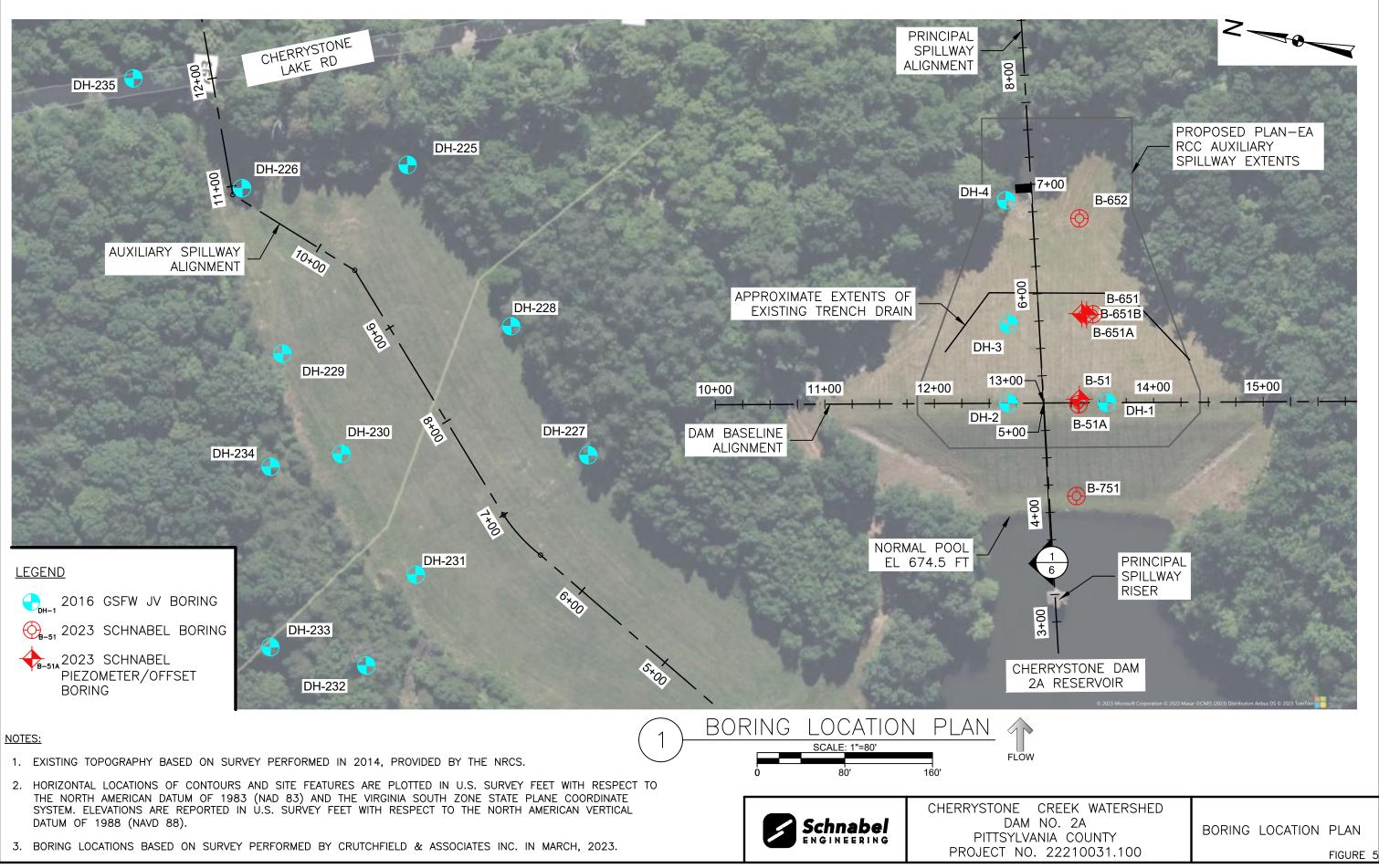

- Figure 1: Project Vicinity Map
- Figure 2: Soils Map
- Figure 3: Geologic Map
- Figure 4: Seismicity Map
- Figure 5: Boring Location Plan
- Figure 6: Geological Section

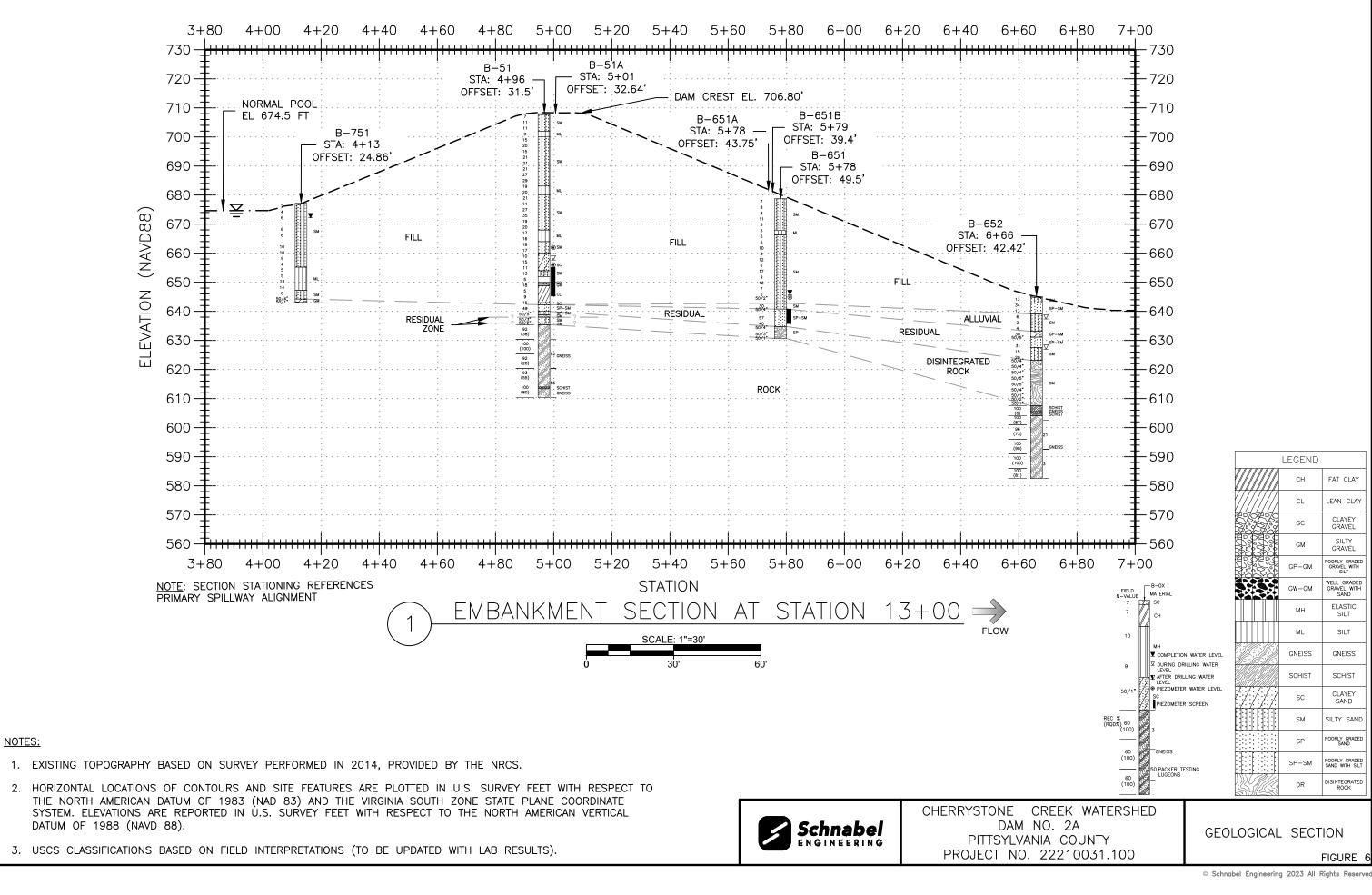


Cherrystone_Dam1_Rehab_VA\03_SE_Products\07_GIS\Projects\Site Location Maps\Site Location Maps.aprx 000 10031_ G:\2022\Greensboro\222

Schnabel Engineering, Inc. 2023. All Rights Reserved.

Schnabel Engineering, Inc. 2023. All Rights Reserved.




CHERRYSYONE CREEK WATERSHED DAM NO. 2A PITTSYLVANIA COUNTY PROJECT NO. 22210031.100

SEISMICITY MAP

FIGURE 4

© Schnabel Engineering 2023 All Rights Reserved

3. USCS CLASSIFICATIONS BASED ON FIELD INTERPRETATIONS (TO BE UPDATED WITH LAB RESULTS).

TABLES

- Table 1:
 Summary of Boring Locations, Depths, and Termination Information
- Table 2: Summary of Water Level Measurements
- Table 3: Summary of Hydraulic Conductivity Testing Results in Rock and Soil

Table 1: Summary of Boring Locations, Depths, and Termination Information

Boring ID	Northing (ft)	Easting (ft)	General Location	Ground Surface Elevation (ft)	Total Depth (ft)	Bottom Elevation (ft)	Depth to Rock (ft)	Elevation of Top of Rock (ft)	Reason For Termination
B-51	3469256.38	11210013.97	Embankment Crest Right of Primary Spillway	708.4	97.6	610.8	72.6	635.8	Boring terminated at selected depth.
B-51A	3469255.97	11210018.59	Embankment Crest Right of Primary Spillway	708.9	63.2	645.7			Boring terminated at selected depth.
B-651	3469250.79	11210097.06	D/S Mid-Slope	679.0	48.1	630.9			Boring terminated at selected depth.
B-651A	3469256.4	11210096.03	D/S Mid-Slope	679.0	34	645.0			Boring terminated at selected depth.
B-651B	3469260.9	11210096.72	D/S Mid-Slope	679.0	18	661.0			Boring terminated at auger refusal.
B-652	3469270.86	11210183.12	U/S Mid-Slope	645.4	62.6	582.8	37.6	607.8	Boring terminated at selected depth.
B-751	3469250.56	11209930.39	D/S Embankment Toe	677.5	34.1	643.4			Boring terminated at selected depth.

<u>Notes</u>

1) Elevations are recorded in North American Vertical Datum NAVD88

2) Elevations based on survey performed by Crutchfield & Associates Inc. in March, 2023.

Table 2: Summary of Water Level Measurements

Boring ID	Ground Surface Elevation (ft)	Boring Depth (ft.bgs)	Depth to Water (ft.bgs)	Elevation of Water (ft)	Date of Water Level Reading	Time of Water Level Reading	Date of Boring Completion	Event
B-51	708.4	97.6	52.0	656.4	1/10/23	12:55:00 PM	1/19/2023	Encountered
B-51	708.4	97.6	50.3	658.1	1/10/23	3:05:02 PM	1/19/2023	End of Day
B-51	708.4	97.6	49.6	658.8	1/11/23	3:41:55 PM	1/19/2023	During Drilling
B-51	708.4	97.6	44.2	664.2	1/11/23	9:38:55 AM	1/19/2023	Start of Day
B-51A	708.9	63.2	46.0	662.9	1/20/23	12:00:00 PM	1/18/2023	Observation Well
B-51A	708.9	63.2	53.4	655.5	3/4/23	2:30:00 PM	1/18/2023	Observation Well
B-651	679.0	48.1	32.3	646.7	1/11/23	3:38:00 PM	1/11/2023	Completion
B-651	679.0	48.1	34.0	645.0	3/4/23	2:45:00 PM	1/11/2023	Observation Well
B-651A	679.0	34.0	Dry				1/16/2023	Completion
B-651B	679.0	18.0	Dry				1/16/2023	Completion
B-652	645.4	62.6	7.0	638.4	1/23/23	4:25:00 PM	1/24/2023	During Drilling
B-652	645.4	62.6	17.4	628.0	1/24/23	11:12:00 AM	1/24/2023	During Drilling
B-751	677.5	34.1	4.3	673.2	1/10/23	8:21:00 AM	1/10/2023	Completion

Notes

1) Elevations are recorded in North American Vertical Datum NAVD88

2) Elevations based on survey performed by Crutchfield & Associates Inc. in March, 2023.

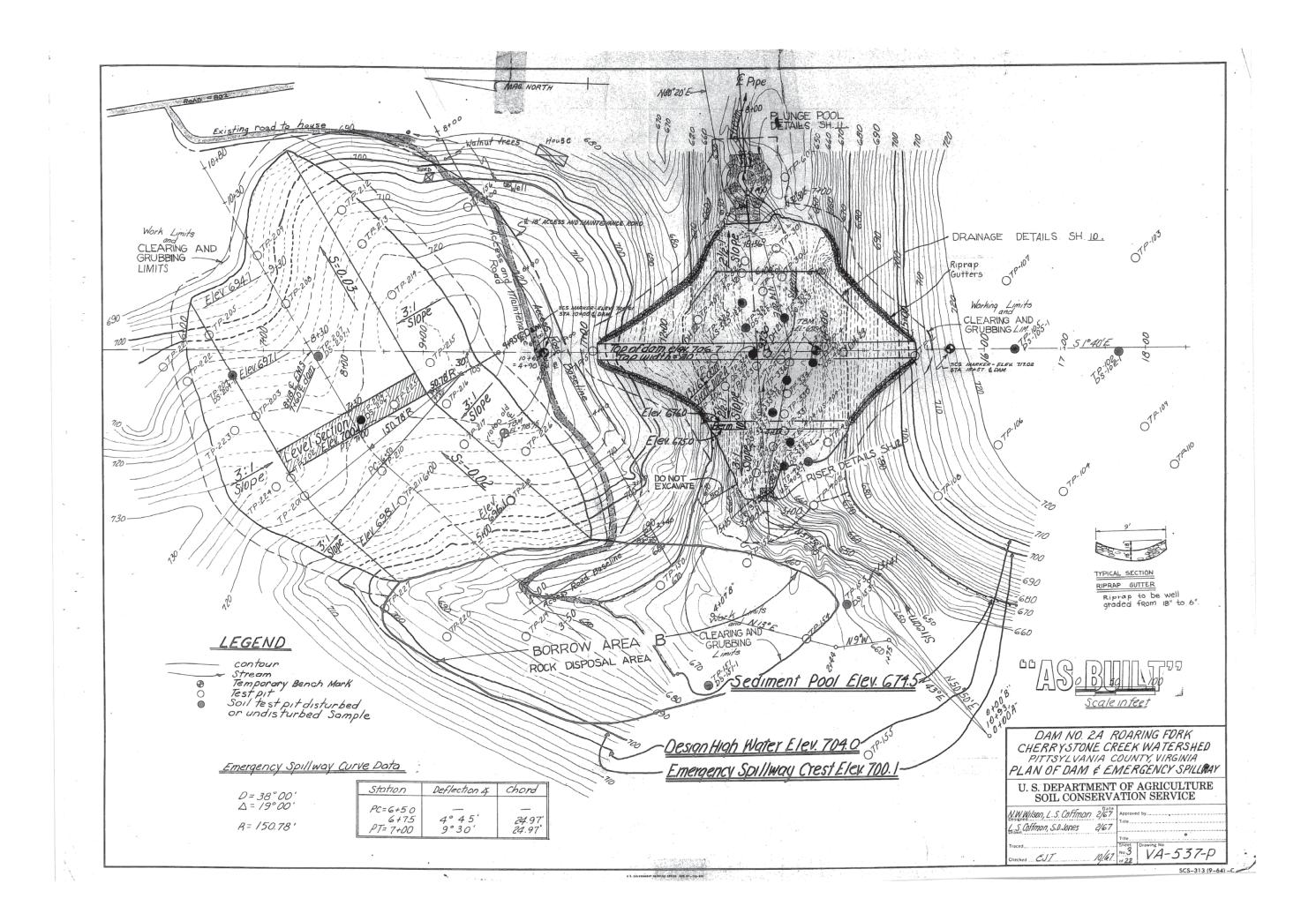
3) Water level measurements may not be representative of stabilized water levels.

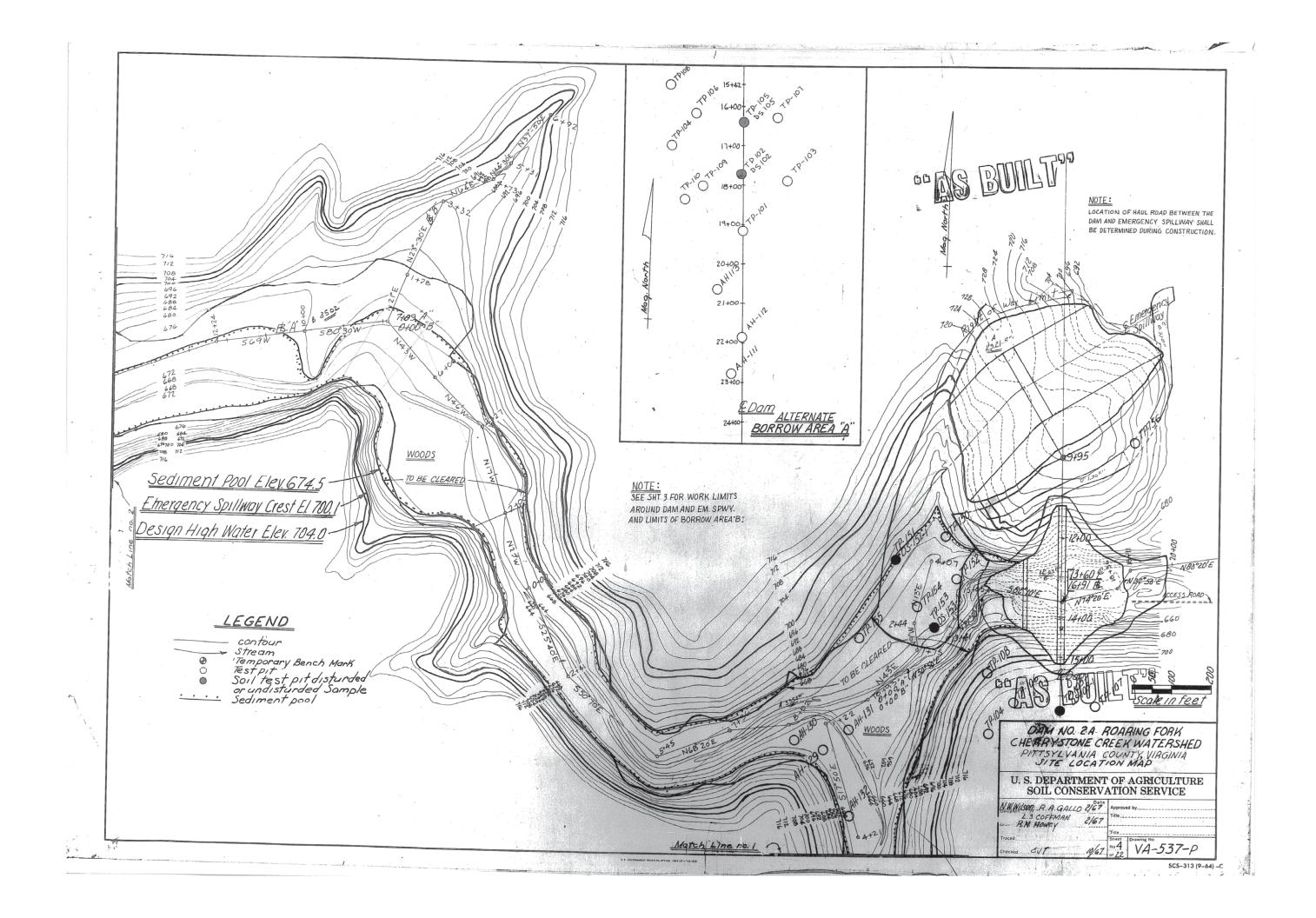
								Pac	ker Testin	g (in Rock)				
Boring ID	Ground Surface	Depth	(ft bgs)	Eleva	ation (ft)	Water Level Before Test (ft	Test Type	Lugeons	Pern	neability	Maximum Effective	Test Interpretation	Description of Test Section	
воппу ів	Elevation	Тор	Bottom	Тор	Bottom	before rest (it bgs)	restrype	Lugeons	ft/sec	cm/sec	Pressure (psi)	rest interpretation	Description of Test Section	
B-51	708.4	77.6	87.6	630.8	620.8	46.0	Packer	92	3.6E-05	1.1E-03	42	Turbulent	D2, Gneiss, slightly to moderately weathered, slightly to moderately fractured, RQD %: 31 to 100, REC %: 92 to 100	
B-51	708.4	87.6	97.6	620.8	610.8	46.0	Packer	55	2.1E-05	6.3E-04	48	Wash Out	D1/D2, Gneiss, Schist, slightly to moderately weathered, slightly to moderately fractured, RQD %: 55 to 80, REC %: 93 to 100	
B-51	645.4	42.6	118.5	602.8	526.9	36.0	Packer	15	6.0E-06	1.8E-04	25	Turbulent	D2, Gneiss, fresh to slightly weathered, slightly to moderately fractured, RQD %: 73 to 90, REC %: 96 to 100	
B-652	645.4	52.6	118.5	592.8	526.9	36.0	Packer	3	1.0E-06	3.1E-05	33	Fracture Filling	D2, Gneiss, fresh to slightly weathered, slightly to moderately fractured, RQD %: 81 to 100, REC %: 100 to 100	
					•	-	•	S	lug Testing	g (in Soil)	•			
	Ground		d Interval		ed Interval ition (ft)	Water Level		Bouwer	KGS Model	Geometric				
Boring ID	Surface Elevation	(п Тор	bgs) Bottom	Top	Bottom	Before Test (ft bgs)	Test Type	& Rice (cm/sec)	(cm/sec)	Mean (cm/sec)	Description of Test Section			
B-51A	708.9	52.7	62.7	656.2	646.2	45.3	Falling Head	8.7E-05	1.0E-04	6.4E-05			ated 5-10% fine to coarse gravel, 56-58.7' Fill, sampled as Clayey 15-25% fines, 58.7-59.2' Fill, sampled as Silty Gravel (GM), 15-25%	
0.014	700.5	52.7	02.7	050.2	040.2	45.5	Rising Head	3.6E-05	5.1E-05	0.42 05	fines, 59.2-62.7' Fill, sampled as Sandy Lean Clay, 30-45% fine to coarse sand, 5-10% fine to coarse gravel			
B-651A*	679.0	37.8	40.8	641.2	638.2	34.3	Falling Head	2.3E-03	1.5E-03	1.7E-03	37.8-38' Alluvial, sampled as Sandy Silt (ML), 30-45% fine to coarse sand, contains wood, 38-40.8' Resiudal, sampled as Poo Graded Sand with Gravel (SP), 15-25% fine to coarse gravel, contains weather rock fragments.		barse sand, contains wood, 38-40.8' Resiudal, sampled as Poorly	
B-031A	079.0	57.6	40.8	041.2	056.2	54.5	Rising Head	1.4E-03	1.8E-03	1.72-03			intains weather rock fragments.	
B-651A*	679.0	37.8	42.8	641.2	636.2	34.3	Falling Head	1.9E-03	1.1E-03	1.3E-03	37.8-38' Alluvial, sampled as Sandy Silt (ML), 30-45% fine to coarse sand, contains wood, 38-42.8' Resiudal, sampled as Poc		parse sand, contains wood, 38-42.8' Resiudal, sampled as Poorly	
P-02TM.	079.0	57.0	42.0	041.2	030.2	54.5	Rising Head	1.0E-03	1.5E-03	1.55-03	Graded Sand with Gravel (SP), 15-25% fine to coarse gravel, contains weather rock fragments.			

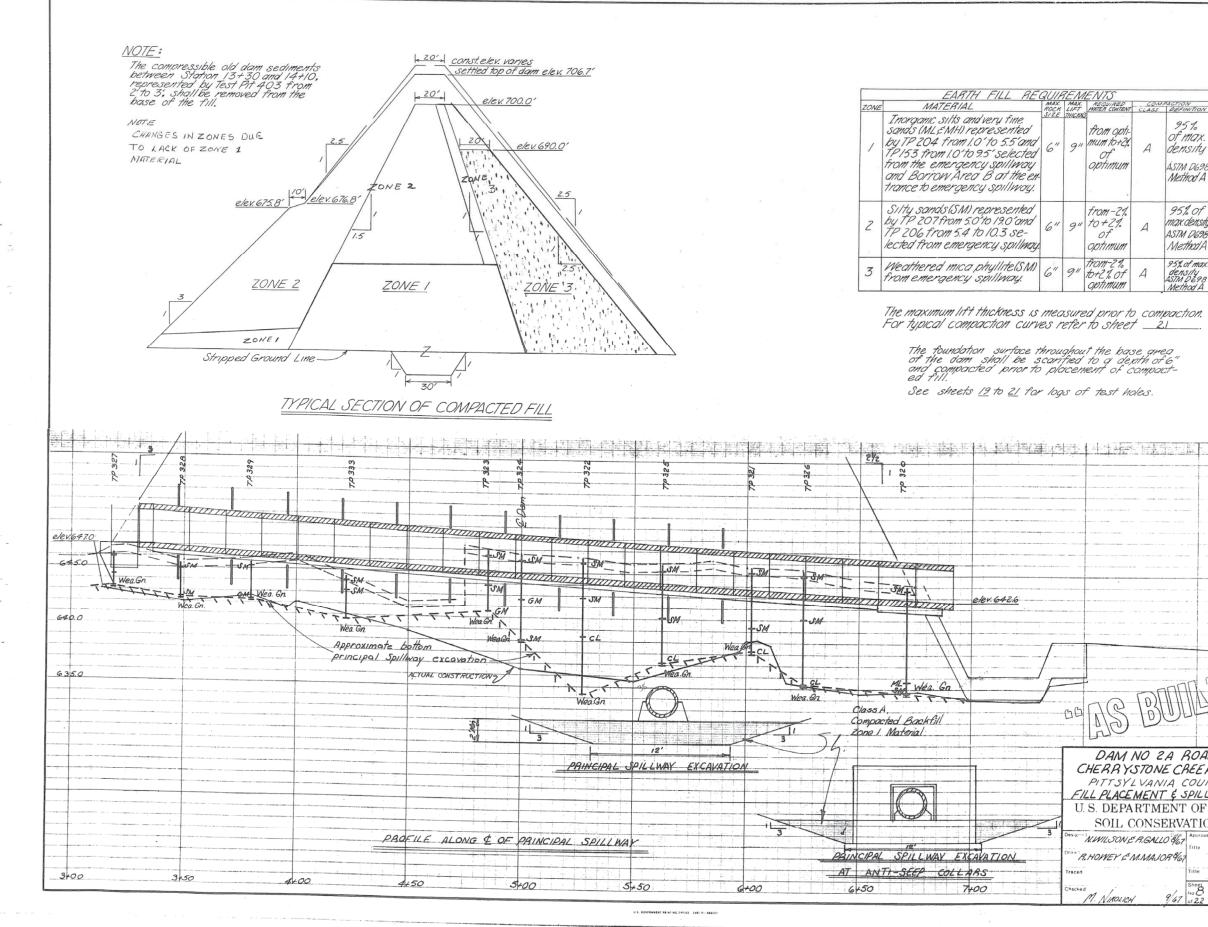
Table 3: Summary of Hydraulic Conductivity Testing Results in Rock and Soil

Notes:

1) RQD is based on the rock in its condition immediately after coring. RQD may decrease upon exposure.

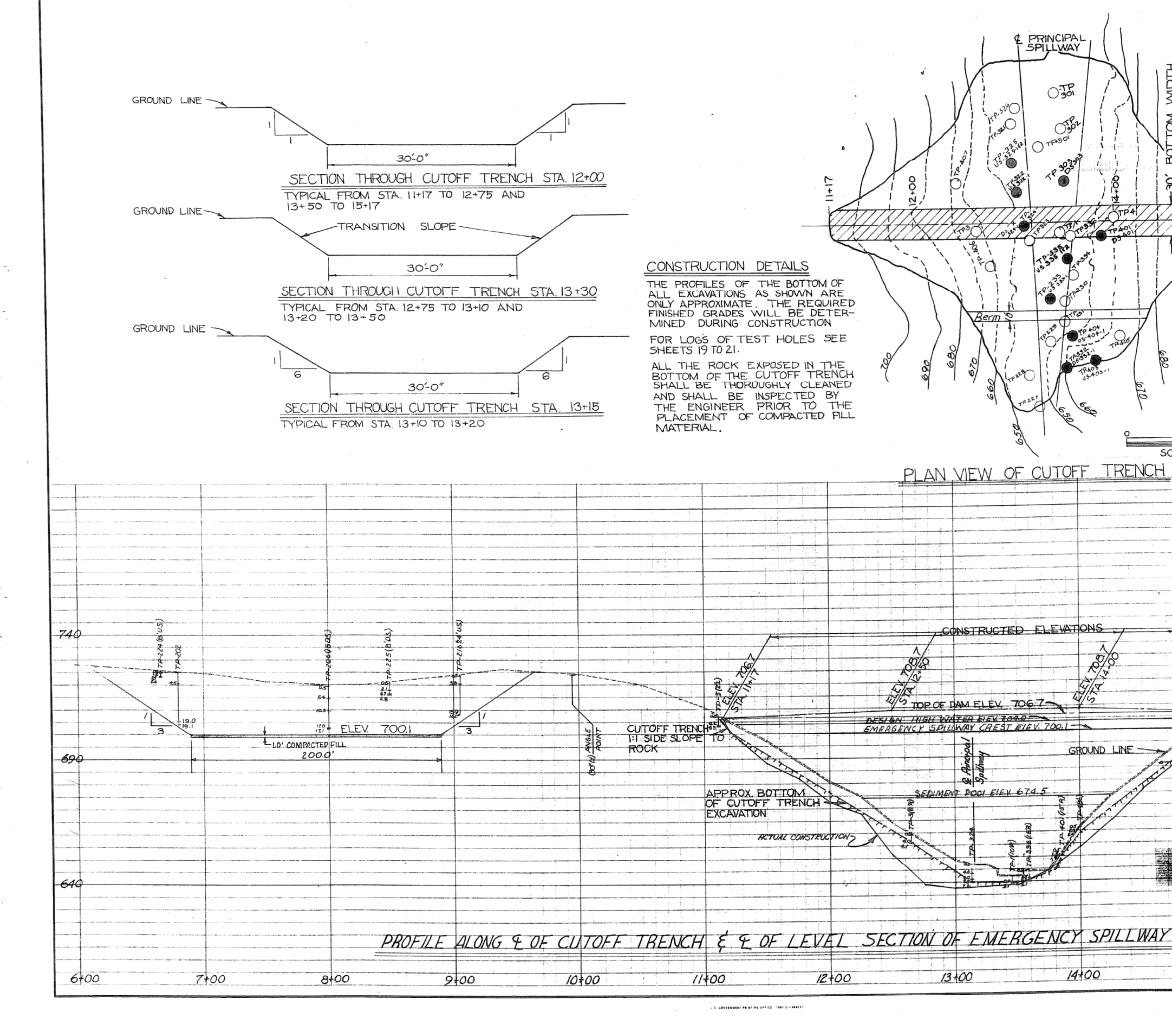

2) Description of Test Section for Slug Testing (in Soil) is based field classifications from boring B-51 and B-651.


3) Elevations are recorded in North American Vertical Datum NAVD88.


* See Monitoring Well Installation Sketch for comments regarding bottom of screen interval. Permeability was calculated for both the measured open screen interval and the entire screen interval.

APPENDIX A

SELECTED 1967 AS-BUILT DRAWINGS



MAX. ROCK SIZE	MAX. LIFT THICKNS	REQUIRED WATER CONTENT	CLASS	DEFINITION
6"		from opti- mum to+24. of optimum	A	95 % Of MAX. density Astm 0698 Method A
6"	9"	from-21. to+21. of optimum	Д	95% Of max.density ASTM D698 Method A
6"		from-2% to+2% of optimum	A	95% of max density ASTM DE98 Method A

		ALC: NO.
		1
tij in symmer overlage Westig desert has an		
1 1 1		
19-19-19-19-19-19-19-19-19-19-19-19-19-1		
		;
Г		. 4
/	0.0	
F		
	DAM NO ZA ROARING FORK	
	CHERRYSTONE CREEK WATERSHED	
	PITTSYLVANIA COUNTY, VIRGINIA FILL PLACEMENT & SPILLWAY EXCAVATION	
	U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE	
3	Devigent NUMILSON & R.GALLO GG7 Draw	
	Drax"R. HOWEY & M.MAJOR \$67 Traced Title	1
	Checked M. NIROLICH 9/67 0122 Drawing No VA-537-P	
	Form SCS-317 (November 1955)	1

MIDTH BOTTOM à CUTOFF TRENCH TPAOL 40 TP-2 SCALE CUTOFF TRENCH III SIDE SLOPE TO ROCK 5705 STRIPPED GROUND LINE D 9 66 D 010 00 DAM NO. 2A ROARING FORK CHERRYSTONE CREEK WATERSHED PITTSYLVANIA COUNTY, VIRGINIA DETAIL CUTOFF TRENCH U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE Designed Date N.W.WILSON & R.A.GALLO 8/67 D.E. POOLE H. NASH 8/67 VA-537-P 10/67 EVT Form SCS-317 (November 1955)

r				
	TEST PITS (BACKHOE)	TP 105, STA. 16+38 C/L DAM	TP 152, 263'R STA. 13+04 C/L DAM, ELEV. 662.6	TP 204, 31'R STA. 6+61 C/L DAM, ELEV. 712.8
	TP 1, 10'R STA. 13+46 C/L DAM, ELEV. 643.6 TM 12-6-66	TM 12-7-66 0.0 0.5 Topsoil - Fluvanna Series (ML)	TM 12-8-66	TM 12-8-66
	0.0 3.0 Cobbles and gravels - hard sub- angular gray gneiss (*4 80% est by wt) w/sand, silty - brown - wet w/creek - 1.4 loose (CM)	0.5 4.4 Clay, silty - yellow red - hard - moist - dry hole (CL)	0.0 0.5 Topsoil - dam sediment (ML) 0.5 7.2 Silt, clayey brown w/red brown layers and mottles -	0.0 0.5 Topsoil - Tatum series 0.5 5.5 Clay, silty - yellow red - hard - moist
		4.4 5.5 Silt, clayey w/sand - red -	hard - moist (ML)	DS 204-1 1.0-5.5
	3.0 3.1 Gneiss - backhoe refusal. <u>TP 2. 7'R STA. 15+14 C/L DAM</u> <u>TM 12-7-66</u>	hard - molst (HL) DS 105-1 4.4-5.5 MH	7.2 9.0* Sand, silty - brown - medium moist - dry hole (SM)	5.5 14.3+ Sand, silty - brown red -
		5.5 5.6 Highly weathered gneige	TP 153, 518'R STA. 14+29 C/L DAM, ELEV. 663.8 TM 12-8-66	micaceous - hard - moist - dry hole
	0.0 0.5 Topsoil - residual (ML 0.5 3.5 Clay, silty w/cobbles (+4 35%		0.0 0.5 Topsoil - dam sediment & (ML)	TP 205, 19'L STA. 6+33 C/L DAM, ELEV. 703.3 TM 12-8-66
	est) yellow red - hard - moist - dry hole (CL)	TM 12-7-66	0.5 9.5+ Silt, clayey - brown w/few mottles - few lenses - sand.	0.0 0.5 Topsoil - Tatum series
- ,	3.5 3.6 Weathered gneiss - backhow	(ML)	silty - hard to medium - moist - dry hole - seismic velocity -	0.5 6.0 Silt, clayey - yellow red - hard - moist
	refusal <u>TP 3, 8'R STA. 12+63 C/L DAM, ELEV. 658.9</u>	0.5 5.6 Clay silty - bright yellow red - hard moist (CL)	5000 ft/sec at 17.6 ft. (ML)	6.0 8.5+ Sand, silty - brown yellow -
-	TM 12-7-66	5.6 7.2 Silt, sandy w/clay - red - hard - moist - dry hole -	DS 153-1 1.0-9.5 ML TP 154, 360'R STA. 13+77 C/L DAM, ELEV. 663.6	hard - moist - dry hole TP 206, 81'R STA. 8+22 C/L DAM, ELEV. 719.8
	0.0 0.5 Topsoil - resudual (ML) 0.5 4.0 Weathered fractured spectra	some spines weathered gneiss to 3.0 feet (ML)	TM 12-8-66	TM 12-8-66
~ ,	0.5 4.0 Weathered fractured gneiss - salt and pepper and red yellow - hard - dry hole	7.2 7.3 Weathered gneiss - weak backhoe refusal	0.0 0.5 Topsoil dam sediment (ML) 0.5 9.5* Silt, sandy w/clay - sand in pockets	0.0 0.5 Topsoil - Tatum series 0.5 5.4 Clay silty - yellow red -
	4.0 4.1 Gneiss - backhoe refusal	TP 107, 85'L STA. 16+28 C/L DAM	and lenses that range to 2' thick (+200 30% est) medium - moist -	hard - moist
•	TP 4, 5'L STA. 14+00 C/L DAM, ELEV. 663.9	TM 12-7-66 0.0 0.5 Topsoil - Fluvanna series (ML)	dry hole (ML)	5.4 10.3 Sand, silty - pale yellow white hard - damp - weathered pegmatite
	TM 12-12-65 0.0 0.5 Topsoil (ML)	0.5 3.8 Silt, claver w/cobbles	TP 155, 507'R STA, 14+54 C/L DAM, ELEV. 669.8 TM 12-8-66	dike DS 206-1 5.4-10.3
	0.5 2.3 Clay, silty - brown red -	yellow red and yellow brown - hard moist - dry hole (ML)	0.0 0.5 Topsoil - Tatum series (ML)	10.3 17.0 Send, silty vellow brown -
	hard - moist - dry hole (CL) 2.3 2.4 Mica feldspar gueiss - dozer	3.8 3.9 Weathered gneiss - backhoe refusel	0.5 6.5 Clay, silty - yellow red - hard - moist - dry hole (CL)	micaceous - hard - moist - dry hole
	reiusar	TP 108, 184'R STA. 15+42 C/L DAM	6.5 6.6 Weathered gneiss backhoe refusal	17.0 17.4 Gray phyllite - bucket auger refusal
	TP 5, 2'L STA. 11+11 C/L DAM, ELEV. 707.3 TM 12-12-66	TM 12-7-66 0.0 0.5 Topsoil - Fluvanna series (ML)	TP 156, 180' L STA. 9+56 C/L DAM, ELEV. 7/0.5	TP 207, 7'R STA. 7+68 C/L DAM, ELEV. 713.5
	0.0 0.5 Topsoil (ML)	0.5 3.0 Silt, clayey red w/cobbles	0.0 0.5 Topsoil - Tatum series (ML) 0.5 5.0 Clay silty - yellow red -	TM 12-8-66 0.0 0.5 Topsoil - Tatum series
	0.5 4.2 Silt, clayey - red brown to 3.0 yellow red to 4.2 - hard -	gneiss - hard - moist - dry hole (ML)	hard - moist (CL)	0.5 5.0 Silt, clayey - yellow red -
	moist - dry hole - few cobbles and spines gneiss (ML)	3.0 3.1 Weathered gneiss - backhoe refusal	3.0 4.6 Sand, silty - red yellow - hard - moist - dry hole (SM)	hard - moist (ML on 5.0 19.0+ Sand silty - yellow brown -
	4.2 4.3 Biotite feldspar gneiss - backhoe refusal	TP 109, 100'R STA. 18+00 C/L DAM	4.6 4.7 Weathered mica phyllite - backhoe refusal	5.0 19.04 Sand slity - yellow brown - hard - moist - micaceous - dry hole
	TP 101, STA. 19+13 C/L DAM TM 12-7-66	TM 12-12-66 0.0 0.5 Topsoil - Fluvanna series (ML)	TP 201, 187'R STA. 7+50 C/L DAM, ELEV. 717.9	DS 207-1 5.0-19.0
	0.0 0.5 Topsoil - Fluvenna Series (ML)	0.5 4.5 Clay silty - red - hard -	TM 12-7-66 0.0 0.5 Topscil - Tatum series (ML)	TP 208, 59'L STA. 7+29 C/L DAM, ELEV. 702.8
	0.5 3.5 Clay, silty - bright maller	molst (CL)	0.5 2.3 Silt, clayey - yellow red -	0.0 0.5 Topsoil
	red - hard - moist - dry hole (CL) 3.5 3.6 Weathered gneiss - backhog	hard - moist - dry hole (ML)	hard - moist (ML) 2.3 4.0 Sand, silty - red - micaceous -	0.5 5.0 Silt, clayey - yellow red - hard - moist
-	reiusal	8.4 8.5 Hornblende gneiss - backhoe refusal	hard - moist (SM)	3.0 12.5 Send. silty - micaceous -
-	TP 102, 05'R STA. 17+69 C/L DAM, TM 12-7-66	TP 110, 147'R STA. 18+31 C/L DAM TM 12-12-66	4.0 10.5 Silt, clayey - red - hard - moist - dry hole (ML)	yellow brown - hard - moist - dry hole
•	.0.0 0.5 Topsoil - Fluvanna series (ML)	0.0 0.5 Topsoil - Fluvanna series (ML)	10.5 14.0 Sand, silty - yellow brown - micaceous - hard - moist -	12.5 12.6 Gray phyllite bucket auger refusa
	0.5 4.7 Clay, silty - bright yellow red - hard - moist - dry hole (CL)	0.5 3.4 Silt, clayey - brown to yellow red - hard - moist - 25% est	dry hole (SM)	TP 209, 119'L STA. 6+94 C/L DAM, ELEV. 691.1 TM 12-8-66
	DS 102-1 1.0-4.7 ML	angular amphibolite and horn- blende gneiss cobbles - dry hole (ML)	14.0 14.1 Weathered mice phyllite - gray - bucket auger refusal	0.0 0.5 Topsoil - Tatum series
	4.7 7.1 Silt, sandy - red - hard - moist - dry hole (ML)	3.4 5.5 Hornblende gneiss - backhoe refusal	TP 202, 158'R STA. 7+34 C/L DAM, ELEV. 724.5 TM 12-7-66	0.5 4.0 Clay, silty - brown red - hard - moist
	7.1 7.2 Highly weathered olive gneiss - weak backhoe refusal	TP 150, 291'R STA. 11+95 C/L DAM, ELEV. 667.6 TM 12-8-66	0.0 0.5 Topsoil - Tatum series (ML)	4.0 7.3 Sand, silty - gray and yellow brown - hard to very hard -
	TP 103, 110'_ STA. 17+88 C/L DAM	0.0 0.5 Topsoil - Tatum series (ML)	0.5 4.5 Silt, clayey - yellow red - hard - moist - wavy lower	moist - saprolite from phyllite - dry hole
	TM 12-7-66 0.0 0.6 Topsoil - Fluvanna Series (ML)	0.5 5.0 Clay silty - red - hard -	boundary (ML) 4.5 19.0 Sand silty - brown vellow -	7.3 7.4 Weathered phyllite - backhoe
	0.6 2.6 Clay silty w/cobbles - bright	5.0 8.0 Silt, clayey - red - hard -	4.5 19.0 Sand silty - brown yellow - very hard - micaceous - digs very hard - moist - dry hole (SM)	refusal TP 210, 145'R STA. 8+48 C/L DAM, ELEV. 716.0
	yellow red - hard - moist - dry hole (CL)	moist - dry hole (ML)	19.0 19.1 Weathered mics phyllite - palered	TM 12-8-66
	2.6 2.7 Weathered hornblend gneiss - backhoe refusal	weathered pegmatite	and olive gray - bucket auger refusal - seismic velocity 5000 ft/sec at 24.0 ft.	0.0 0.5 Topsoil Tatum series 0.5 5.0 Clay, silty - yellow red -
	TP 104, 180'R STA. 16+98 C/L DAM	TP 151, 418'R STA. 12+54 C/L DAM, ELEV. 667.4 TN 12-8-66	TP 203, 81'R STA. 6+90 C/L DAM, ELEV. 720.8	hard - moist
	TM 12-7-66 0.0 0.5 Topsoil - Fluvanna series (ML)	0.0 0.5 Topsoil - Seneca series (ML)	TM 12-8-66	5.0 16.5+ Sand, silty - yellow brown - micaceous - hard - moist -
	0.5 4.5 Clay, silty - bright roller	0.5 9.5 Silt, clayey w/sand - yellow red - hard - moist - dry hole (ML)	0.0 0.5 Topsoil - Tatum series (ML) 0.5 3.9 Silt, clayey - yellow red -	dry hele <u>TP 211, 186'R STA. 8+05 C/L DAM, ELEV. 711.8</u>
	red - hard - moist - dry hole (CL) 4.5 4.6 Weathered gneiss - backhoe	DS 151-1 1.0-9.5 5M	hard - moist (ML)	IM LEEB-00
	refusal	9.5 9.6 Mica phyllite - backhoe refusal	3.9 14.8 Sand, silty - brown yellow - damp - tary hard - bdry hole (SM)	0.0 0.5 Topsoil Tatum series 0.5 4.0 Silt, clayey - yellow red -
			14.8 14.9 Weathered mics phyllite - bucket auger refusal - seismic velocity	hard - moist
			5000 ft/sec at 18.1 ft.	4.0 10.0+ Sand, silty - micaceous - yellow brown - hard - moist - dry hole

10928 .

> Sand, silty - brown red -micaceous - hard - moist -dry hole (SM STA. 6+33 C/L DAM, ELEV. 703.3 TM 12-8-66 Topsoil - Tatum series (ML Silt, clayey - yellow red -hard - moist (ML Sand, silty - brown yellow -hard - moist - dry hole (SM STA. 8+22 C/L DAM, ELEV. 719.8 TM 12-8-66 Topsoil - Tatum series (ML Clay silty - yellow red -hard - moist (CL Sand, silty - pale yellow white -hard - damp - weathered pegmatite dike (SM) DS 206-1 5.4-10.3 SM Sand, silty yellow brown -micaceous - hard - moist -dry hole (SM) Gray phyllite - bucket auger refusal TA. 7+68 C/L DAM, ELEV. 713.5 TM 12-8-66 (ML) Topsoil - Tatum series Silt, clayey - yellow red -hard - moist (ML or CL) Sand silty - yellow brown -hard - moist - micaceous -dry hole (SM) DS 207-1 5.0-19.0 SM STA. 7+29 C/L DAM, ELEV. 702.8 TM 12-8-66 Topsoil (ML) Silt, clayey - yellow red -hard - moist (ML) Sand, silty - micaceous -yellow brown - hard - moist -dry hole (SM) Gray phyllite bucket auger refusal STA. 6+94 C/L DAM, ELEV. 691.1 TM 12-8-66 (ML) Topsoil - Tatum series

Clay, silty - brown red -hard - moist (CL) Sand, silty - gray and yellow brown - hard to very hard -moist - saprolite from phyllite -dry hole (SM) Weathered phyllite - backhoe refusal STA. 8+48 C/L DAM, ELEV. 716.0 TM 12-8-66 (ML) Topsoil Tatum series ` Clay, silty - yellow red -hard - moist 60 Sand, silty - yellow brown -micaceous - hard - moist -dry hole Car STA. 8+#3 C/L DAM, ELEV. 711.8 TM 12-8-66 (ML Topsoil Tatum series Silt, clayey - yellow red -hard - moist (ML)

Sand, silty - micaceous - yellow brown - hard - moist - dry hole (SM)

F22724	4 · ·
	TP 212, 105'L STA. 7+99 C/L DAM, ELEV. 706.9
(ML)	0.0 0.5 Topsoil - Tatum series (ML)
(CL)	0.5 6.0 Silt, clayey - yellow red - hard - moist - dry hole (ML)
лΗ	6.0 6.1 Weathered mica phyllite - hard - backhoe refusal
SM)	TP 213, 104'L STA. 8+25 C/L DAM, ELEV. 712.5 TM 12-8-66
	0.0 0.5 Topsoil - Tatum series (ML)
ML)	0.5 3.5 Clay, silty - yellow red -
1L)	hard - moist (CL) 3.5 6.1 Sand, silty - yellow brown - hard - moist w/weathered gray phyllite (SM)
SM)	6.1 8.7 Sand, silty - pale yellow white - hard - weathered pegmatite - dry hole (SM)
ML)	.8.7 8.8 Weathered phyllite - backhoe refusal - seismic velocity 10,000 ft sec at 33 ft.
CL)	TP 214, 70'L STA. 8+@1 C/L DAM, ELEV. 719.3
SM)	0.0 0.5 Topsoil - Tatum series (ML)
N	0.5 4.2 Clay, silty - yellow red - hard - moist (CL)
SM)	4.2 6.4 Sand, silty w/angular phyllite gravels - hard - sapprolite from mixed phyllite and pegmatite - dry hole (SM)
	6.4 6.5 Weathered phyllite - backhoe refusal
	TP 215, 14'R STA. 9+09 C/L DAM, ELEV. 723.8
UT)	TM 12-8-66 0.0 0.5 Topsoil - Tatum series (ML)
L)	0.5 2.7 Clay, silty - yellow red - hard - moist (CL)
M)	2.7 5.7 Sand, silty - white - hard - moist - weathered physicitie (SM)
SM	5.7 10.2 Sand, silty - gray - very hard - moist - saprolite from phyllite - dry hole (SM)
L)	10.2 10.3 Weathered phyllite bucket auger refusal - seismic velocity 5000 ft/sec at 15.4 ft.
(L)	TP 216, 65'R STA. 9+29 C/L DAM, ELEV. 721.9 TM 12-8-66
, · · ·	0.0 0.5 Topsoil - Tatum series (ML)
M)	0.5 3.6 Clay, silty - yellow red - bard - moist (CL)
	(02)
L)	 3.6 15.9 Sand, silty - yellow brown - micaceous - hard - moist to damp - dry hole (SM) 15.9 16.0 Mica phyllite - gray - bucket
L)	auger refusal TP 217, 115'R STA. 9+50 C/L DAM, ELEV. 716.5
-	TM 12-8-66
м)	0.5 5.0 Clay, silty - yellow red -
2	hard - moist (CL) 5.0 12.0 Sand, silty - yellow brown and white - hard - moist - mixed weathered mics phyllite and peg-
L)	matite - dry hole (SM) 12.1 Biotite phyllite - bucket
R	auger refusal
19	DAM NO. 24 ROARING FORK CHERRYSTONE CREEK WATERSHED
3	PITTSYLVANIA COUNTY, VIRGINIA
	LOGS OF TEST HOLES
.)	U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE
L)	Investigated by: Date Approved by Ast Sutton A
м)	Title State Conservation
4	Title No 9 1/A 527 D
1	MARKI Geologist or 22 VA-331-P

2 ... 9

-

-

۰.

TP 218, 185	"R STA. 10+09 C/L DAM, ELEV. 706.5
0.0 0.5	TM 12-8-66 Topsoil - Tatum series (ML)
0.5 4.3	Clay, silty - yellow red w/ some gray weathered phyllite
4.3 11.0	+ Silt, sandy - yellow brown -
TP 219, 356	<u>'R STA. 10+27 C/L DAM, ELEV. 690.5</u> TM 12-8-66
0.0 0.4	
0.4 6.4	
6.4 8.5	+ Sand, silty - yellow brown - some mica - hard - moist - dry hole (SM)
TP 220, 357	'R STA. 9+28 C/L DAM, ELEV. 693.5 TM 12-8-66
0.0 0.5	Topsoil - Tatum series (ML)
0.5 5.0	Clay, silty - yellow red - hard - moist (OL)
5.0 8.5	hard - moist - dry hole (SM)
	R STA. 5+75 C/L DAM, ELEV. 702.3 TM 12-12-66
0.0 0.5	Topsoil (ML)
0.5 4.3	Silt, clayey - yellow red - hard - moist (ML)
4.3 6.0	Sand, silty - yellow brown - micaceous - very hard - moist - dry hole (SM)
6.0 6.1	Mica phyllite - backhoe refusal
TP 222, 40'R	STA. 6+05 C/L DAM, ELEV. 709.9 TM 12-12-66
0.0 0.5	Topsoil (ML)
0.5 4.1	Silt, clayey - yellow red - hard - moist (ML)
4.1 6.6	Sand, silty - yellow brown - micaceous - very hard - moist - dry hole (SM)
6.6 6.7	Mica phyllite - backhoe refusal
	R STA. 6+64 C/L DAM, ELEV. 720.8 TM 12-12-66
0.0 0.5	Topsoil (ML)
	Silt, clayey - yellow red - hard - moist (ML)
	Sand, silty - yellow brown - micaceous - hard - moist - dry hole (SM)
5.4 5.5	Mica phyllite - backhoe refusal
	R STA. 7+15 C/L DAM, ELEV. 724.3 TM 12-12-66
0.0 0.5	Topsoil (ML)
1.2 2.5	Silt, clayey - yellow red - hard - moist (ML)
2.5	Sand, silty - yellow brown - micaceous - hard - moist - dry hole (SM)
2.5 2.6	Mica pnyllite - backhoe refusel
	STA. 8+63 C/L DAM, ELEV. 721.5 TM 12-12-66
0.0 0.5	Topsoil (ML)
0.5 3.1	Clay, silty - yellow red - hard - moist (CL)
3.1 4.7	Sand, silty - yellow brown - highly weathered mica schist - hard - moist - dry hole (SM)
4.7 4.8 TP 226, 124'R	Mica phyllite - backhoe refusal
	TM 12-12-66
0.0 0.5 0.5 2.0	Topsoil (ML) Silt, clayey - brown red -
2.0 4.2	Silt, clayey - brown red - hard - moist (ML) Weathered gneiss w/gneice
4.2 4.3	Weathered gneiss w/gneiss cobbles - hard - dry hole Slightly weathered gneiss - w/feldspar & muscovite - backhoe refusal

U

1			1
TP 227, 322	'R STA. 8+50 C/L DAM, ELE	V. 700.3	TP 32
0.0 0.5	TM Topsoil - Tatum series	12-8-66	0.0
0.5 6.0	Clay silty - red and ve	(ML)	0.5
6.0 7.4	Sand, silty - micaceous	(CL)	3.5
7.4 7.5	hard - moist - dry hole	(SM)	-
	Mica phyllite - backhoe L STA. 13+41 C/L DAM, ELE		7.0
0.0 1.0	TM	12-6-66	1.0
1.0 6.3	Sand, silty - brown str bank (left side) - allu	vial (SM)	and a
	Cobbles and boulders - angular hard gneiss (+4 by wt) w/sand silty - b wet w/water in creek - loose	1.0	12.0 <u>TP 323</u>
6.3 6.4	Weathered gneiss - back	(GM)	0.0
	STA. 13+48 C/L DAM, ELEV		0.5
0.0 1.5	TM	12-6-66	
	Sand, silty - brown - L stream bank - (left) - (alluvial(SM)	3.0
1.5 5.5	Cobbles and gravels w/bd ranging to 2x2x2 ft 1 angular to subangular g 80% est by wt) w/aend s: w/creek 1.5 - brown - 1d	oulders hard gray heiss (+4 ilty wet	5,4
			TP 324
5.5 5.6	Weathered gneiss - back		0.0
TP 303, 41'L	STA. 13+51 C/L DAM, ELEV. TM	<u>642.6</u> 12-6-66	0.5
0.0 1.8	Sand, silty - brown - st bank - alluvial	ream (SM)	
1.8 6.3	Cobbles, gravels, and bo hard - angular gray gned 80% est by wt) w/sand, s gray brown - loose - wat creek 1.5	88 (+4	4.0
	DS 303-1 1.8-6.3	(GM)	7.5
6.3 6.4	Weathered gneiss - backh	6 D (01)	TP 325
	Field Gradation 1.8-6.3		0.0
Si Ir	lze Weight No. Pe aches lbs Parts	rcent	0.5
L L	2-18 131 4 9-12 111 6	15.2 13.0	
Less than	3-6 122 64	9.5 14.3	
Total		<u>48.1 t</u> o lab 00.2	4.6
moract	right -3" = 485 lbs w/ 18. re = 410 dry weight - +3" dry		
	. STA. 12+85 C/L DAM, ELEV	ette e	8.7
	TM	<u>. 644.6</u> 12-6-66	<u>TP 326,</u>
0.0 0.5	Topsoil - alluvial	(SM)	0.0
	Sand, silty w/some SP - loose - moist	(SM)	0.5
2.0 8.5	Silt, clayey - yellow re gray - medium - moist to water 7.0 w/increasing c w/depth (+3 inch 30% est	wet w/	4.3
8.5 9.5	Sand, silty - gray brown loose - wet	12	10.0 TP 327,
9.5 9.6	Weathered gneiss - backh	(SM) De	0.0
TP 321, 99'L	STA. 12+90 C/L DAM, ELEV.	644.7	0.5
0.0 0.5	Topsoil - alluvial	2-6-66	2.0
0.5 5.3		(SM) iium -	3.0
53.76	Sand, silty - brown - me. pp 1.7 - moist - dd 79.3 m 19.7% at 2.0 ft	· · · · · · · · · · · · · · · · · · ·	
5.3 7.5	Clay, sandy - gray - soft 0.7 - moist to wat w/wate dd 77.8 m 31.7 at 6.0 ft	t - pp er 6.0 - (CL)	<u>TP 328,</u>
7.5 7.6	Weathered gneiss - backho refusal		0.0
			n 1.4.
			3.0
			Port 1

1. 3,6 4,

322	2, 28'1	L STA. 13+03 C/L DAM, ELEV. 644 TM 12-6-	.5	TP 32	9, 119	R STA. 13+37 C/L DAM, ELEV. 645.6 TM 12-6-66	
0.0	0.5	Topsoil - alluvial	(SM)	0.0	0.5	Topsoil - alluvial	(SM)
0.5	3.5	Sand, silty w/cobbles angulas gneiss - brown - loose - moi	r st (SM)	0.5	3.4	Cobbles and boulders - angular hard gneiss rock (+4 80% est) w/sand silty - brown hard wet	
3.5	7.0	Clay, silty - yellow red - medium - moist - pp 1.2	(CL)	3.4	3.5	w/water 2.4 Weathered gneiss - backhoe refus	(GM)
		US 322-1 4.0-5.0	SM	TP 330		STA. 13+50 C/L PAM, ELEV. 644.9	
7.0	12.0	Clay, silty - mottled yellow brown and gray - soft to medi pp 0.8 - wet w/water 9.6 - do	um -			TM 12-6-66	()
		85.5 pcf, m 29.4% at 9.0 ft.	(CL)	0.0	0.5	Topsoil - alluvial	(SM)
		DS 322-1 7.0-12.0	SM	0.5	5.5	Sand silty w/50% est angular hard gneiss cobbles - medium - pp 2.3 - moist - brown some	
	12.1	Weathered gneiss - backhoe re				boulders range to 1x2x3 feet - w/some 8"x8"x10 foot beams from	
323	, 16'R	STA. 13+13 C/L DAM, ELEV. 647. TM 12-6-6	16		6 E	old dam	(SM)
0.0	0.5	Topsoil - alluvial	(SM)	3.5	4.5	Sand, clayey w/cobbles - wet - w/water 3.4 - soft pp 1.0	(SC)
0.5	3.0	Sand, silty - brown - loose - moist - pp 1.0	(SM)	4.5	4.6	Weathered gneiss - backhoe refusa	1
5.0	5.4	Cobbles and gravels - hard - gray - quartz and gneiss loos	e	TP 331	, 100'	R STA. 13+50 C/L DAM, ELEV. 644.9 TM 12-6-66	
		moist to wet w/water from cre 3.0	ek (GM)	0.0	2.0	Gravel w/sand - brown - gray - wet w/creek 1.0	(GM)
5.4	5.5	Weathered gneiss backhoe refu		2.0-	2.1	Weathered gneiss - backhoe refusal	
324	021R	STA. 13+11 C/L DAM, ELEV. 646. TM 12-6-6	1	TP 332	, 142'	660.3 R STA. 13+50 C/L DAM, ELEV. 550.3	
0.0	0.5	Topsoil - alluvial	(SM)			TM 12-6-66	
.5	4.0	Gravel, sandy - subrounded - hard quartz - loose - moist	(@)	0.0	0.5 13.0	Topsoil - dam sediment Silt, w/clay - red brown and	(SM)
		DS 324-1 1.0-4.0	GW-GM	0.5	19.0	gray layered - very hard - pp 4.5 - damp dd 75.7 pcf, m 16.3%	
.0	7.5	Sand silty w/45% est angular					(ML)
		hard gneiss cobbles and bould loose - moist to wet w/water (5.0 (SM)	13.0	15.0	Sand - poorly graded - white - very loose - moist - dd 98.5 pcf, m 0.6% at 14.0 ft	(SP)
.5	7.6	Gneiss - weathered - backhoe refusal				DS 332-1 13.0-15.0	5P-SM
325,	60'L	STA. 12+98 C/L DAM, ELEV. 644.9		15.0	17,0	Cobbles w/silt and sand - angular hard gray gneiss - cobbles and gravels 60% est w/silt clayey -	
.0	0.5	Topsoil - alluvial	(SM)			brown - hard - moist - dry hole	(GM)
.5	4.6	Sand, silty w/gravels quartz .		17.0		Weathered gneiss - backhoe refusa	L
		brown - medium - moist - pp 1.3 - dd 85.4, m 9.1% at 2.0 ft	(SM)	<u>TP 333</u> ,	76'R	STA. 13+36 C/L DAM, ELEV. 644.7 TM 12-6-66	
		US 525-1 1.0-2.0	SM	0.0	0.5	Topsoil - elluvial	(SM)
.6	8.7	Clay, cobbley w/sand - gray - soft pp 1.0 - moist to wet w/		0.5	1.4		(SM)
		Vater 6.5 US 325-2 5.0-5.5	(CL) Nº 5M	1.4	4.0	Sand, coarse - poorly graded - brown gray - wet w/water in creek 1.4	(SP)
.7	8.8	Weathered gneiss - backhoe ref	usal	1.1		DS 333-1 1.4-4.0	5P
326,	114'L	STA. 13+01 C/L DAM, ELEV. 644. TM 12-6-6	5	4.0	4.1	Weathered gneiss - backhoe refusal	
0	0.5	Topsoil - alluvial	(SM)	TP 334,	54'R	STA. 13+54 C/L DAM, ELEV. 644.8 TM 12-6-66	
5	4.3	Sand, silty - brown - medium		0.0	0.4		SM)
3 1	LO.0	to loose - moist Clay, silty w/cobbles - gray -	(BM) .	0.4	6.5	Sand, gravelly - w/35% angular cobbles and boulders - hard	
.0 1	L0.1	soft - moist to wet w/water 8. Weathered gneiss - backhoe ref				gneiss - brown - loose - caves - pp 1.0 moist to wet w/water 3.2 (SM)
	181'R	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6.5	6.6	Weathered gneiss - backhoe refusal	•
		TM 12-6-6		<u>TP 335,</u>	36'R	STA. 13+54 C/L DAM, ELEV. 645.1 TM 12-6-66	
5	0.5	Topsoil - alluvial	(SM)	0.0	0.5	Topsoil - alluvial	SM)
	2.0	Sand, gravelly - brown - loose moist	(SM)	0.5	2.3	Sand, poorly graded - brown - $\omega/silf$ loose - pp 1.2	SM)
0	3.0	Sand, clayey - gray - hard - moist to wet w/water 2.5	(SC)				SM) P-SM
0	3.1	Weathered hornblende gneiss - backhoe refusal		2,3	5.0	Silt, clayey w/sand - gray - medium - pp 1.5 - moist-dry	
28,	152'R	STA. 15+17 C/L DAM, ELEV. 645.0				NOT	ML) SM
0	0.5	Topsoil - alluvial	(SM)	3.0	3.1	Weathered gneiss - backhoe refusal	
5		Sand, silty w/50% angular hard gneiss cobbles and gravels -					
i '		brown - loose to hard - moist t wet w/water 2.5	(SM)				
0	3.1	Weathered gneiss - backhoe refu	Isal				
				na 1944 - Carlos Maria		and and a second se	
in inter	Section Sec	1 - Shell Martin The star of a	in the second	Sec. 2			212 A.

U.S. GOVERNMENT PRINTING OFFICE | 1954 07-744-544

. 6	TP 336, 16'R STA. 13+57 C/L DAM, ELEV. 645.3 TM 12-6-66
(SM)	0.0 0.5 Topsoil - alluvial (SM)
Comy	0.5 2.5 Sand, silty - brown - loose - moist - pp 0.7 - dd 96.0 pcf, m 6.9% at 1.0 ft (SM)
(GM)	2.5 4.6 Sand, silty - gray - medium - moist to wet w/water 3.0 -
isal	pp 1.5 - dd 91.6 pcf, m 27.1% at 3.0 ft (SM)
(SM)	4.6 4.7 Weathered gneiss - backhoe refusal
(Sh)	TP 401, 15'R STA. 13+86 C/L DAM, ELEV. 652.7 TM 12-6-86
	0.0 0.5 Topsoil - alluvial (ML) 0.5 1.3 Clay, silty - yellow red -
(SM)	hard - moist - dry hole (CL)
(SC)	DS 401-1 1.0-1.3 SM 1.3 1.4 Gneiss - hard - backhoe refusal
usel	TP 402, 192'R STA. 13+87 C/L DAM, ELEV. 663.0 TM 12-7-66
2	TM 12-7-66 0.0 0.5 Topsoil - dam sediment (ML)
(GM)	0.5 1.0 Silt, clayey - brown -
	medium - moist - dry hole (ML) 1.0 1.1 Hard hornblende gneiss - strong backhoe refusal spine
3 5	TP 403, 138'R STA. 13+80 C/L DAM, ELEV. 661.3 TM 12-7-66
(SM)	0.0 0.5 Topsoil - dam sediment (ML)
	0.5 10.0+ Silt, fine sandy w/clay - brown w/some grav - hard -
(ML)	brown w/some gray - hard - damp - dry'bole - dd 82.7 pcf, m 29.6% at 3.0 ft (ML)
f,	US 403-1 3.0-4.0 ML
(SP)	TP 404, 114'R STA. 13+59 C/L DAM, ELEV. 661.2 TM 12-7-66
5P-SM ar	0.0 0.5 Topsoil - dam sediment (ML)
	0.5 10.0+ Silt, clayey - yellow brown and brown w/area yellow red
(GM) sal	3.0-5.0 - very hard - pp 4.5+ damp - dry hole - dd 76.0 pcf, m 31.4% of 3.0 ft (ML)
	US 404-1 2.0-3.0 ML
(SM)	TP 405, 113'R STA. 14+05 C/L DAM, ELEV. 662.8 TM 12-7-66
(SM)	0.0 0.5 Topsoil - residual (ML)
	0.5 2.5 Clay, silty - yellow red - hard - moist - dry hole (CL)
(SP)	2.5 2.6 Weathered gneiss - backhoe refusal
SP	TF 406, 43'R STA. 12+77 C/L DAM, ELEV. 659.9 TM 12-7-66
sal	0.0 0.5 Topsoil - residual (ML)
(SM)	0.5 1.0 Clay, silty - red - hard - moist - dry hole (CL)
(SEI)	1.0 1.1 Weathered gneiss - backhoe refusal
- (SM)	
sal.	
(SM)	
silt (SM)	
SP-SM	DAM NO. 24 ROAR ING FORK · CHERRYSTONE CREEK WATERSHED
-	PITTSYLVANIA COUNTY, VIRGINIA
(ML)	LOGS OF TEST HOLES
sal	U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE
	Investigated by: Date Approved by A. Button, H.
	Engineer Engineer
	Checked by: Cheller The Sheet Drawing No

			14 H	
	TP 407, 40'L STA, 12+44 C/L DAY, EVEL, 650 -			Contraction of the second s
-	TP 407, 40'L STA. 12+44 C/L DAM, ELEV. 659.7 TM 12-7-66 0.0 0.5 Topsoil - colluvial in old quarry pit 0.5 6.0 Silt, sandy - brown and yellow brown - hard moist - dry hole DS 407-1 1.0-6.0 """"""""""""""""""""""""""""""""""""	AH 130, 669'R STA. 17+11 C/L DAM TM 12-14-66 (SM) 0.0 0.5 Topsoil - dam sediment (SM) 0.5 8.0 Sand, silty - brown - medium moist - dry hole (SM) 8.0 8.1 Gneiss - auger refusel (SM) AH 131, 530'R STA. 16+84 C/L DAM TM 12-14-66 (SM) 0.5 2.0 Sand, silty w/silt, sandy - brown - medium - woist (SM) 2.0 6.0 Silt, sandy - gray yellow - medium - moist (SM)		
-	hard gray gneiss - (+4 70% est) w/sand w/silt - medium - moist - debris cobbles from old dam (CM) 4.0 .8.0 Sand, poorly graded - brown - loose - caves (SP) DS 501-1 4.0-8.0 SP.SM	 6.0 6.5 Sand, silty - gray yellow - medium - moist (SM) 6.5 9.0 Silt, sandy - gray yellow - medium - moist - dry hole (ML) 9.0 9.1 Gneiss - auger refusal 		MOISTURE CONTENT IN PERCENT OF DRY WEIGHT COMPACTION CURVE FIELD SAMPLE NO. 204-1 ASTM DESIGNATION D-698 METHODA
	 8.0 10.5 Sand, silty - gray - loose - medium grained - wet w/water 8.0 (SM) 10.5 10.6 Weathered gneiss - backhoe refusal <u>TP 601, 216'L STA. 13+53 C/L DAM, ELEV. 643.4</u> <u>TM 12-6-66</u> 	AH 132, 514'R STA. 19+06 C/L DAM TM 12-14-66 0.0 0.5 Topsoil - dam sediment (SM) 0.5 1.5 Sand, silty - brown - medium - moist (SM) 1.5 3.0 Silt, sandy - brown - medium -		Solu IN LBS / CU
	TM 12-6-66 0.0 0.5 Topsoil, sand - alluvial (SM) 0.5 6.0 Sand, poorly graded - loose - brown - moist (SP) DS 601-1 1.0-6.0 SP-SM 6.0 8.0+ Sandy silty - gray - soft -	moist - dry hole (ML) 3.0 3.1 Oneiss - auger refusal		
	* Continued from TP 110 AH 111, 26'L STA. 22+75 C/L DAM	-	24 26 28 30 32 34 MOISTURE CONTENT IN PERCENT OF DRY WEIGHT COMPACTION CURVE FIELD SAMPLE NO. 105-1 ASTM DESIGNATION D-698METHOD A	B 10 12 14 16 18 20 22 MOISTURE CONTENT IN PERCENT OF DRY WEIGHT COMPACTION CURVE ' FIELD SAMPLE NO 206-1 ASTM DESIGNATION D-698_ METHOD A
	TM 12-14-66 0.0 0.5 Topsoil - Fluvanna series (ML) 0.5 9.0+ Silt, clayey - red - hard - moist - dry hole (ML) <u>AH 112, STA. 21+81 C/L DAM</u> <u>TM 12-14-66</u>			
	0.0 0.5 Topsoil - Fluvanna series (ML) 0.5 6.0 Silt, clayey - red - hard - moist (ML) 6.0 9.0+ Sand, silty - yellow brown - micaceous - hard - moist -		COMPACIED SOIL	00000000000000000000000000000000000000
3 	AH 113, 37'R STA.2D+62 C/L DAM (SM) AH 113, 37'R STA.2D+62 C/L DAM M12-14-66 0.0 0.5 Topsoil - Fluvanna series (ML) 0.5 6.0+ Silt, clayey - red - hard -		NO 95 NO 12 14 16 18 20 22 MOISTURE CONTENT IN PERCENT OF DRY WEIGHT COMPACTION CURVE	12 14 16 18 20 22 24 26 MOISTURE CONTENT IN PERCENT OF DRY WEIGHT COMPACTION CURVE
	AH 128, 548'R STA. 20+05 C/L DAM (ML) TM 12-14-66 0.0 0.0 0.5 Topsoil - dam sediment (SM) 0.5 8.0+ Sand, silty - brown - medium - moist w/water 8.0 (SM)		FIELD SAMPLE NO. 151-1 ASTM DESIGNATION D-698 METHOD A	FIELD SAMPLE NO. 207-1 ASTM DESIGNATION D-698 METHODA
	AH 129, 594'R STA. 17+35 C/L DAM TM 12-14-66 0.0 0.5 Topsoil - dam sediment over Fluvanna series (SM) 0.5 4.5 Silt, sandy - light gray -		CITED SOIL IN L8	
. *	4.5 7.0 Silt, clayey - red - hard - moist - dry hole (ML). 7.0 7.1 Gneiss - auger refusal			AT 95 0 90 20 22 24 26 28 30 32 MOISTURE CONTENT IN PERCENT OF DRY WEIGHT COMPACTION CURVE
				FIELD SAMPLE NO. 102-1 ASIM DESIGNATION D-698 METHODA

	J. C.
	1 A BARANE
	LEGEND
	TEST HOLE NUMBERING SYSTEM
	Centerline of dam 1 - 99 Borrow area 101 - 199
	Emergency spillway 201 - 299 Centerline of outlet structure 301 - 399 Foundation 401 - 499
	Toe drain 501 - 599
	UNIFIED SOIL CLASSIFICATION SYSTEM SYMBOLS
	GW Well graded gravels; gravel-sand mixtures GP Poorly graded gravels
	GM Silty gravels; gravel-sand-silty mixtures GC Clayey gravels; gravel-sand-clay mixtures SW Well graded sands; sand-gravel mixtures SP Porty graded neds; sand-gravel mixtures
	SM Silty sands; sand-silt mixtures
	ML Silts; silty, v. fine sands; sandy or clayey
	CL Clays of low to medium plasticity; silty, sandy or gravelly clays CH Clays of high plasticity; fat clays
A	MH Elastic silts; micaceous or diatomaceous silts OL Organic silts and organic silty clays of low
	plasticity
	SYMBOLS
	AH Auger hole TP Test pit DS Disturbed sample
	DS Disturbed sample US Undisturbed sample pp Pocket penetrometer reading in tons/sq. ft.
	m moisture
	pcf pounds/cubic feet ft/sec feet/seconds
	Ground water levels in test pits were determined from December 6, 1966 to December 14, 1965. Moisture conditions during the durant level.
	Moisture conditions during the investigation were normal.
montinette	List of precipitation:
	Dec. 13 - approx 2" rain
A	All soil and rock descriptions and classification
	were determined by visual examination.
	(ML) - Soil classification by bisual inspection ML - Unified classification by soils laboratory
_	
	"AS BUILT"
	DAM NO. 24 ROARING FORK CHERRYSTONE CREEK WATERSHED
	PITTSYLVANIA COUNTY, VIRGINIA
	LOGS OF TEST HOLES
	U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE
10	Byeastigated by: Date Approved by A. B. B. B. B. B.
1.11	Title State Conservorion
100	Recked by:
	Geologist No21 VA-537-P
	SCS-313 C (9-64)

DRILL HOLES	Constant Head Permeability Tests Length k Depth Die.pipe Die.hole pipe apm ff/daw	31.7 Ц5.0 Gneiss - hard - gray & gray white - feldspar, muscovite, phlogopite, quartz, garnets 30 ⁰ fractures 31.6,	23.8 25.0 Gneiss - dark gray banded sait & pepper colored - hard - feldspar,	
<u>DH 21. stA. 13+29.5 C/L DAM, ELEV. 646.72</u> <u>тж 12/19/67</u> 0.0 0.4 Topsoll - Leaf Litter b mod	5.0 3.75 6.0 4.2 93.5	31.8, 32.1, 32.2, 32.8, 33.8, 34.0	hornblende, garnets & some biotite – 1,5° fractures 23,8–21,0, 21,0–21,.2, 21,3–21,5 – Mn w/some red clay in	
roots - alluviai (SM)	11.3 - 16.5 NX 12.0 9.0 13.8 16.5 - 21.5 NX 12.0 1.0 1.11 21.5 - 26.2 NY 12.0 3.0 10	45° fractures 33.2-33.4, 35.8-36.0 broken In matchbox to 8 Inch size pieces - breaks often 0 occur on	fractures 25.0 28.9 Pegmatite – white & light gray w/	
0.4. 3.5 Sand, silty w/ir≴ est. qtz. (SW) subangular gravels – hard to medium – moist – brown	26.2 - 31.2 NX 12.0 0 0 31.2 - 36.2 NX 12 0.3 0.27	phlogopite & garnet gneissic layers that range from ½ linch to I−1/3 inches thick	feidspar & quartz - highly fractured w/pieces that range from 2 inches to matchbox size - Mn stain on fractures -	
3-5 3-9 Sand, silty - coarse w/28% est. (3%) qtz. and gneiss gravels - brown - hard to loose - wet w/water 3.9	Note - Water stands in hole after overnight measurement at 3-9. On drilling runs cesing is sufficiently tight for water not to stand in hole above 23.0.	Recovery 2.5 - 4.0 = 100%	low recovery 28.9 45.9 Gneiss - hard - banded salt & pepper colored - feldspar, hornblende w/some	
8.9 10.5 Cobbles, sandy w/gravet (+4,75% (SM) est. hard angular quartz permatite	Thus, 3.9 is considered creek water and was not used as h to obtain k to 26.2 feet. For 31.2-36.2 25.0 was used as h.	4.0 = 7.5 = 100% 7.5 = 12.5 = 100% 12.5 = 17.5 = 50%	blotite – aplite dikes 29.9–30.3, 30.6–30.7 159 fractures 31.7–31.9, 35.1–35.2,	
and garnet gnolss and hornblende gnolss)wysand - wet - medium - (cobbles 55% est.)	Pressure Tests w/Top of Gage 1.0' above Top of NX Hole	17.5 - 22.5 = 78% 22.5 - 27.5 = 20% 27.5 - 30.0 = 20%	35.2-35.3, 35.5-35.6, 35.7-35.8, 37.0-37.2 30° fractures 20.5, 30.0, 30.2, 36.5,	
10.5 II.0 Weathered gneiss – fractured to 2 inch pieces – w/Fe and Mn stain – quartz, feldspart & muscovite –	11.5 – 16.5 = 17.0 gpm at 10 psi 22.5 gpm at 15 psi 16.3 gpm at 10 psi	30-0 - 32-5 = 40% 32-5 - 26-5 = 95% 36-5 - 41-5 = 95%	36.7 = core barrel dropped fairly fast 30.0-33.0 = broken in 2 inch to 22 foot pieces = 37.0-45.9 unfractured core =	
low recovery - gray brown - cased to 11.3	13.5 - 18.5 = 6.8 gpm at 10 psi 9.0 gpm at 15 psi 6.5 gpm at 10 psi	Li.5 = Li5.0 = 100% Constant Head Permeability Tests	highly fractured core 30.0-33.0 - hole had to be cased to 29.5 - BX uncased hole below - water stands 33.5	
some muscovite hard – unweathered – light gray – Li5 fracture w/iron stain ⊔i⊃-12.0 – broken in I foot pieces	15.0 - 20.0 = 0 gpm at 15 psi 0 gpm at 30 psi 20.0 - 25.0 = 21.5 gpm at 15 psi	Depth Dia hole Length pipe gpm k ft/day	Recovery	
12.0 13.5 Gneiss – gray & white – contact metamorphic – hard – hornblende – feldspar uuertz – gnaratu – puele	30.5 gpm at 30 psi 21.5 gpm at 15 psi 21.0 - 29.0 = 0 gpm at 15 psi 0 gpm at 30 psi	2.5 - 7.5 NX 3.0 0.08 0.33 7.5 - 12.5 NX 3.0 0.132 0.28 12.5 - 17.5 NX 3.0 0.072 0.10	0.5 = 2.0 = 53% 2.0 = 4.0 = 45% 4.0 = 5.0 = 45%	
feldspar quartz - garnens - pyrite w/sulfides - ½5 fractures 12.2-12.3, 12.4-12.5, 12.6-12.7 w/red clay in seems - horizontal fracture 13.1 -	25.0 - 30.0 = 0 gpm at 15 psi 0 gpm at 30 psi 30.0 - 36.2 = 1.0 gpm at 15 psi	22.5 - 27.5 NX 3.0 0 0 22.5 - 27.5 NX 3.0 0.51 0.145 27.5 - 32.5 NX 3.0 0.30 0.22	5.0 = 10.0 = 100% 10.0 = 15.0 = 64% 15.0 = 16.5 = 27% 16.5 = 19.0 = 43%	
broken in 3 inch to matchbox size pieces – possible 1/2 foot core loss	3.6 gpm at 30 psi I₀0 gpm at 15 psi 33.0 – 38.0 = 0.25 gpm at 15 psi	32.5 - 36.5 NX 3.0 0 0 36.5 - 41.5 NX 3.0 0 0 Water stands 28.5	10.5 - 19.0 = 40% 19.0 - 21.5 = 26% 21.5 - 24.5 = 17% 24.5 - 29.5 = 18%	
13.5 14.5 Gneiss - gray & white - hard guelascuity 41p = 70° feldspar, hornblande quartz - broken in 1/2	0.50 gpm at 30 psi 0.25 gpm at 15 psi 33.0 - 46.7 = 0.5 gpm at 15 psi 1.5 gpm at 30 psi	vater stanus 20.7 Pressure Tests w/Top of Gage 2.0' above Top of NX Hole	20.5 - 35.0 = 3107 35.0 - 40.0 = 1007 40.0 - 45.9 = 1007	
foot pieces 14,5 16.6 Amphibolite - gray salt & pepper color - hard - feldspar & hornblende -	0.5 gpm at 15 psi 36.0 – 41.0 = 0.5 gpm at 15 psi 1-25 gpm at 30 psi	2.5 = 7.5 = 0.2 gpm at 5 psi 7.8 gpm at 10 psi 3.3 gpm at 15 psi	Constant Head Permeability Tests w/Head held at 0.5 (top of rock w/no pipe in hole)	
Droken in b inch to 2 inch pieces	37.0 - 42.0 = 0.33 gpm at 15 psi 1.25 gpm at 30 psi 1.25 gpm at 30 psi	5-0 - 10-0 = 1.0 gpm at 5 psi 1-2 gpm at 10 psi 0.3 gpm at 10 psi	Depth Dia.Hole gpm k	
feldspar, quartz, biotite w/some hornblende & garnets = 15° fractures 16.7-16.3, 19.5-19.6, 19.7-19.8 = fracture zone 19.5-20.1 = iron stain	0-33 gpm at 15 psi 37.0 - 46.7 = 0.5 gpm at 15 psi 1.5 gpm at 30 psi 0.5 gpm at 15 psi	10.0 – 15.0 = 0 gpm at 5 psi 0.4 gpm at 10 psi 0 gpm at 5 psi	0.5 = 5.0 NX 0.031 0.11 5.0 = 10.0 NX 0.092 0.291 10.0 = 15.0 NX 0.55 1.03	
in fracture zone (5,5=20,1 =) (for stain in fractures = broken in 9 inch to metchbox size pleces = drills fast 19:5=20.0 - lost little water 19,8	41.0 – μ6.7 = Ο gpm at 15 psi Ο gpm at 30 psi	13.0 - 18.0 = 0.6. gpm at 5 psi 4.2 gpm at 10 psi water returns around top	15.0 – 19.0 NX 1.553 2.1.16 19.0 – 21.0 NX 0 0 21.0 – 29.5 NX 4.5 3.63	
20.2 20.9 Quartz & feldspar pegmatite w/some biotite = white = hard = broken in	DH 22, STA. 12+25 C/L DAM, ELEV. 675.3	packer at 5 psi 18.0 = 23.0 = 0.4 gpm at 5 psi 5.5 gpm at 10 psi 4.3 gpm at 5 psi	29.5 – 35.0 BX 2.2 1.56 35.0 – 1,0.0 BX 0 0 NX hole w/BX casing to 29.5	
2 inch pieces 20.9 46.7 Gneiss - hard - gray & white w/narrow dark gray bands - feldspar, blotite	TM 12/21/67 0.0 0.5 Topsoil = roots - residual (SM)	22.0 – 27.0 = 0.5 gpm at 5 psi 0.5 gpm at 10 psi 0.5 gpm at 5 psi	29.5 to 45.9 BX hole	
quartz, normblende w/garnets = 45° fractures 23.4,=23.5, 26.0=26.1, 37.3=37.4, 10.3=10.5 w/garnets	0.5 2.5 Sand, clayey w/angular gravel (SC) - yellow red - hard - moist - · dry hole	27.0 = 33.0 = 0 gpm at 5 psi 0 gpm at 10 psi 33.0 = 45.0 = 0 gpm at 5 psi 0 gpm at 10 psi	Pressure Tests w/Top of Gage I.5 below Top of 8X Hole 30.0 – 35.0 = I.5 gpm at 5 psi 3.5 gpm at 10 psi	
- horizontal fracture w/Fe stain 20.6, 38.3 - Dink feldsnar w/Fe stain 20.6,	2.5 8.2 Gneiss - gray w/some white in narrow bands - hard - unweathered - feldsoar, biotife, quart - morecula	DH 23, STA. 14+25 C/L DAM, ELEV. 674.6	2.5 gpm at 5 psi 32.0 – 37.0 = i.3 gpm at 5 psi 1.0 gpm at 10 psi	1
29.0 (unakite) - broken zones wisome weathering & phlogopite mica 30,7-30,8, 31.4-32.5 (broken down to matchbox size pieces) = some pieces range up to l₂ ff -	feldspär, biofite, quarts, muscovite, hornblende 1,5° fractures 3,3–3,5, 4.5–4.7, 6.7–6.8, 7.0–7.1, 7.1–7.5 – red clay w/siight Mn stain on	<u>TM 12/27/67</u> 0.0 0.5 Topsoil - clay, sandy - red yellow - (CL)	2.5 gpm at 5 psi 37.0 = 45.9 = 0 gpm at 5 psi 0 gpm at 10 psi	
10st water w/return 23.5 - no fractures 140.5 to 16.7 - core broken on gneissic planes w/muscovite & garnets - water	fractures 8.2 8.5 Clay, silty - bright yellow red (CL) w/40% est. weathered gnelss	hard - moist - some roots - dry - residual 0.5 18.3 Gneiss - hard - weathered to 5.0 -		
passes zones 25.13.5, (large), 30.6 30.8, 31.6-32.5 = xome water passes 37.3-37.1., 38.3, 10.3.10.5	8.5 22.7 Gneiss - gray & white w/olive	dark gray w/white gneissic bands - hornblende, feldspar, muscovite, quartz & garnets - low recovery to		
Blow count with standard equipment	feldspar, muscovite, biotite, phlogopite w/garnets in zone 20.9-22 7 15	5.0 à 15.0-18.3 - highly fractured w/45 [°] fractures 0.5-5.0, 15.0-18.3 - vertical fractures 0.5 to 5.5, 6.0-7.0, 70 [°] fractures (on gneissic planes)		
Depth Blows .	1001.0, 11.0-12.0, 12.3-12.5, 12.9-13.1, 13.5-13.7, 15.1, 13.5-13.1, 13.5-13.7, 15.1, 15.0, 15.6, 15.6, 15.6, 16.9, 16.9, 17.1, 17.3, 17.5,	70° fractures (on gneissic planes) 8.1-8.8, 11.9-12.7, 13.0-13.6 4.5° fractures 5.4-5.5, 5.6-5.7, 6.1-6.2, 6.4-6.5, 7.7-7.8, 7.9-8.0, 8.1-8.2, 9.5-9.6, 14.3-14.4		
3.5 - 4.5 22 7.0 - 8.0 13	20.0-20.9, 21.0-21.1, 22.1-22.2 Mn stain on fractures w/some red clay 12.5 = 30 ⁰ fractures 0.0	An & red clay on fracture planes		66 /
8.0 - 10.5 = 28%	18.5, 22.4 w/M stain on fractures - broken in 12 foot to matchbox size pieces	18.3 21.8 Pegmatite - white & light gray - feldspar quartz, muscovite w/trace of biolite - vertical fracture 18.3-21.7 - broken by 45° fractures in 4 inch to matchbox size		
10.5 - 12.0 = 93% 12.0 - 16.5 = 89% 16.5 - 21.5 = 76% 21.5 - 26.2 = 92%	22.7 31.7 Phyllite - dark gray w/stringers white feldspor, sericite, graphite, feldspar & muscovite - low recovery	pieces – Mn & some red clay on fractures – low recovery		DAM N
26.2 = 31.2 = 100% 31.2 = 36.2 = 100% 36.2 = 41.5 = 100%	<pre>w/loss of sericite in wash water w/ gray wash water - fractured approx. every 5 inches w/(or and for end)</pre>	21.8 23.8 Aplite dikes in hornblende gneiss - aplite w/feldspar quartz & muscovite - gneiss w/hornblende & feldspar - aplite		CHERRYS
41.5 - 46.7 = 100% 12 foot of drive pipe was driven to 11 3 into the	An stain w/some Fe stain on fractures - water stands 29,5	crystal growth from gneiss - white aplite in gray salt & pepper colored hornblende gneiss - vertical fracture		LOGS
gneiss rock.		21.8-23.8 - broken in 3 inch to matchbox size pieces by 45° fractures - red clay w/scme Mn on fractures - low recovery		U. S. DEP SOIL O
				Investigated by:
				Title: Geologist

	ч. 1. 1.		ŀ	,	• •	·人 9	
-						•	
	·						
	•						
	•						
				-			
	CCAS B			J			
a tail	DAM NO. 2A R CHERRYSTONE CR PITTSYLVANIA CC LOGS OF DRI	EEK W UNTY,	ATERSH VIRGI	IED			
and the back of the	U. S. DEPARTMENT SOIL CONSERVA	ATION	SERVIC	E			
Ball and we will be	Investigated by: Date Theory T. Mack C. W. Toney Title: Geologist - Civil Engine Checked by: D. Mack	Approved by Title State	A A King Construction	con Engine	2 er		
the state of	Title: Geologist	Sheet Dra No22 of 22	VA-537	7-P	-64)	ĩ	
+*	and the second se		-	, -			

APPENDIX B

SUBSURFACE EXPLORATION DATA

Subsurface Exploration Procedures General Notes for Subsurface Exploration Logs Identification of Soil Descriptive Criteria for Rock Core Logging Supplemental Rock Descriptive Terms Boring Logs, B-51 through B-751 Borehole Backfill Records Undisturbed Sampling Records Rock Core Box Photographs

SUBSURFACE EXPLORATION PROCEDURES

Test Borings – Hollow Stem Augers

The borings are advanced by turning an auger with a center opening of 3¼ or 4¼ inches. A plug device blocks off the center opening while augers are advanced. Cuttings are brought to the surface by the auger flights. Sampling is performed through the center opening in the hollow stem auger by standard methods after removal of the plug. Usually, no water is introduced into the boring using this procedure.

Test Borings – Temporary Casing

Temporary casing was installed in borings prior to rock coring. Temporary NQ casing (fitted with casing bit) was installed after auger refusal against rock. Casing is then lowered to the bottom of the boring through the augers, and advanced 6 to12 inches into rock. The installation of temporary casing served to protect embankment and foundation materials from interacting with drill water added to support rock coring and in situ hydraulic conductivity testing of rock.

Standard Penetration Test Results

The Standard Penetration Test (SPT) is performed in the borings at regular depth intervals to collect soil samples. The numbers in the Sampling Data column of the boring logs represent SPT results. Each number represents the blows needed to drive a 2-inch O.D., 1³/₆-inch I.D. split-spoon sampler 6 inches, using a 140-pound hammer falling 30 inches. The sampler is typically driven a total of 24 inches. The first 6 inches are considered a seating interval. The total of the number of blows for the second and third 6-inch intervals is the SPT "N-value." The Standard Penetration Test is performed according to ASTM D1586.

The SPT samples were obtained using a hydraulically driven automatic trip hammer (ATH). Most correlations with SPT data are based on N-values collected with a safety hammer. The energy applied to the split-spoon sampler using the ATH is about 33 percent greater than that applied using the safety hammer, resulting in lower N-values. The hammer blows shown on the boring logs are uncorrected for the higher energy. However, we correct SPT N-values for the higher energy when using N-values in our analyses.

Soil Classification Criteria

The group symbols on the logs represent the Unified Soil Classification System Group Symbols (ASTM D2487) based on visual observation and limited laboratory testing of the samples. Criteria for visual identification of soil samples are included in this appendix. Some variation can be expected between samples visually classified, and samples classified in the laboratory.

Disintegrated rock is defined as residual material with SPT N-values between 60 blows per foot and refusal. Refusal is defined as an N-value of 50 blows for a penetration of one inch or less.

Pocket Penetrometer Results

The values following "PP=" in the sampling data column of the logs represent pocket penetrometer readings. Pocket penetrometer readings provide an estimate of the unconfined compressive strength of fine-grained soils.

Rock Core Drilling

The drillers core drilled rock using special core bits set with carbide steel or diamond, depending upon the rock texture. The bit was fitted onto a double-tube, swivel-type core barrel in which an exterior tube and bit rotate, and an interior barrel remains stationary to receive the rock core. Drillers circulated water between the barrels and across the bit face to provide cooling and to flush away cuttings. The size of bits is indicated on individual boring logs.

The length of rock core recovered expressed as a percentage of the total length cored is shown on the logs. Rock Quality Designation (RQD) is also given for rock core drilled with N-size core drilling equipment. RQD is defined as the total length of N-size rock fragments recovered that are greater than 4 inches in length, discounting drilling breaks, expressed as a percentage of the total length cored.

Piezometers

An open standpipe piezometer was installed in designated boring, as noted on the logs, by placing slotted well screen and unslotted riser pipe into the boring, backfilling the screened interval with sand, then placing bentonite chips and cement/bentonite grout above the sand.

Boring Locations and Elevations

Boring locations and ground surface elevations were surveyed using a Topcon HiPer VR GNSS Reciever with sub-centimeter accuracy by Crutchfield and Associates, Inc. of Halifax, Virginia and are indicated on the boring logs. Locations and elevations should be considered no more accurate than the methods used to determine them.

GENERAL NOTES FOR SUBSURFACE EXPLORATION LOGS

- Numbers in sampling data column next to Standard Penetration Test (SPT) symbols indicate blows required to drive a 2-inch O.D., 1%-inch I.D. sampling spoon 6 inches using a 140 pound hammer falling 30 inches. The Standard Penetration Test (SPT) N-value is the number of blows required to drive the sampler 12 inches, after a 6-inch seating interval. The Standard Penetration Test is performed in general accordance with ASTM D1586.
- Visual classification of soil is in accordance with terminology set forth in "Identification of Soil." The ASTM D2487 group symbols (e.g., CL) shown in the classification column are based on our field visual observations and laboratory testing.
- 3. Estimated water levels indicated on the logs are only estimates from available data and may vary with precipitation, porosity of the soil, site topography, and other factors.
- 4. Refusal at the surface of rock, boulder, or other obstruction is defined as an SPT resistance of 50 blows for 1 inch or less of penetration.
- 5. The logs and related information depict subsurface conditions only at the specific locations and at the particular time when drilled or excavated. Soil conditions at other locations may differ from conditions occurring at these locations. Also, the passage of time may result in a change in the subsurface soil and water level conditions at the subsurface exploration location.
- 6. The stratification lines represent the approximate boundary between soil and rock types as obtained from the subsurface exploration. Some variation may also be expected vertically between samples taken. The soil profile, water level observations and penetration resistances presented on these logs have been made with reasonable care and accuracy and must be considered only an approximate representation of subsurface conditions to be encountered at the particular location.

7. Key to symbols and abbreviations:

	SPT S-01, 24 in 0.0-2.0 ft	Standard Penetration Test Sample No., Sample Length Sampling Interval
	UD UD-01, 24 in 0.0-2.0 ft	Shelby Tube Sample Sample No., Sample Length Sampling Interval
	CORE C-01, 60 in 0.0-5.0 ft	Rock Core Sample Run No., Sample Length Sampling Interval
Rec MC LL PL <#200 RQD		Sample recovery (inches and percent) Moisture Content (percent) Liquid Limit Plastic Limit Percent by weight passing a No. 200 Sieve Rock Quality Designation (percent)

IDENTIFICATION OF SOIL

DEFINITION OF SOIL GROUP NAMES (ASTM D2487) Ι.

DEFINITION OF SOIL)	SYMBOL	GROUP NAME	
Coarse-Grained Soils	Gravels –	Clean Gravels	GW	WELL GRADED
More than 50% retained	More than 50% of coarse	Less than 5% fines		GRAVEL
on No. 200 sieve	fraction		GP	POORLY GRADED
	retained on No. 4 sieve			GRAVEL
	Coarse, ¾" to 3"	Gravels with fines	GM	SILTY GRAVEL
	Fine, No. 4 to ¾"	More than 12% fines	GC	CLAYEY GRAVEL
	Sands – 50% or more of coarse	Clean Sands	SW	WELL GRADED
	Fraction passes No. 4 sieve	Less than 5% fines		SAND
	Coarse, No. 10 to No. 4		SP	POORLY GRADED
Medium, No. 40 to No. 10				SAND
	Fine, No. 200 to No. 40	Sands with fines	SM	SILTY SAND
		More than 12% fines	SC	CLAYEY SAND
Fine-Grained Soils	Silts and Clays –	Inorganic	CL	LEAN CLAY
50% or more passes	Liquid Limit less than 50		ML	SILT
the No. 200 sieve	Low to medium plasticity	Organic	OL	ORGANIC CLAY
				ORGANIC SILT
	Silts and Clays –	Inorganic	СН	FAT CLAY
	Liquid Limit 50 or more		MH	ELASTIC SILT
	Medium to high plasticity	Organic	OH	ORGANIC CLAY
				ORGANIC SILT
Highly Organic Soils	Primarily organic matter, dark in c	olor and organic odor	PT	PEAT

II. DEFINITION OF SOIL COMPONENT PROPORTIONS (ASTM D2487)

			Examples
Adjective	GRAVELLY	>30% to <50% coarse grained	GRAVELLY LEAN CLAY
Form	SANDY	component in a fine-grained soil	
	CLAYEY SILTY	>12% to <50% fine grained component in a coarse-grained soil	SILTY SAND
"With"	WITH GRAVEL WITH SAND	>15% to <30% coarse grained component in a fine-grained soil	FAT CLAY WITH GRAVEL
	WITH GRAVEL WITH SAND	>15% to <50% coarse grained component in a coarse-grained soil	POORLY GRADED GRAVEL WITH SAND
	WITH SILT	>5% to <12% fine grained	POORLY GRADED SAND WITH SILT
	WITH CLAY	component in a coarse-grained soil	

III. GLOSSARY OF MISCELLANEOUS TERMS

SYMBOLS	Unified Soil Classification Symbols are shown above as group symbols. A dual symbol "-" indicates the soil belongs to two groups. A borderline symbol "/" indicates the soil belongs to two possible groups.
FILL	Man-made deposit containing soil, rock and often foreign matter.
PROBABLE FILL	Soils that contain no visually detected foreign matter but which are suspect with regard to origin.
DISINTEGRATED ROCK	Residual materials with a standard penetration resistance (SPT) between 60 blows per
(DR)	foot and refusal. Refusal is defined as an SPT of 100 blows for 2" or less penetration.
PARTIALLY WEATHERED	Residual materials with a standard penetration resistance (SPT) between 100 blows per
ROCK (PWR)	foot and refusal. Refusal is defined as an SPT of 100 blows for 2" or less penetration.
BOULDERS & COBBLES	Boulders are considered rounded pieces of rock larger than 12 inches, while cobbles
	range from 3 to 12-inch size.
LENSES	0 to ¹ / ₂ -inch seam within a material in a test pit.
LAYERS	$\frac{1}{2}$ to 12-inch seam within a material in a test pit.
POCKET	Discontinuous body within a material in a test pit.
MOISTURE CONDITIONS	Wet, moist or dry to indicate visual appearance of specimen.
COLOR	Overall color, with modifiers such as light to dark or variation in coloration.

DESCRIPTIVE CRITERIA FOR ROCK CORE LOGGING

Rock is defined as natural subsurface material yielding SPT blow counts of N \ge 100/2 inches (Martin, 1977). Rock descriptions may include the following descriptive elements, as applicable, generally in the order indicated. Supplemental descriptors may also be used, depending on project performance objectives and available information.

ROCK TYPE, strength, weathering, fracturing, color, recovery, RQD

Rock Type General terms are used following the NRCS (2001) rock type classification chart based on visual identification. Some of the NRCS rock types common to our geographic area of practice are listed below. Mineralogical modifiers may be added where they help define distinct units (e.g., Garnet-Muscovite Schist).

Sedimentary:Conglomerate, Sandstone, Mudstone, Siltstone, Claystone, Shale, Limestone, Dolomite, Coal, ChertIgneous:Pegmatite, Granite, Diorite, Gabbro, Diabase, Rhyolite, Monzonite, Andesite, BasaltMetamorphic:Gneiss, Schist, Phyllite, Slate, Quartzite, Marble, Amphibolite, Hornfels

Strength (modified from Hoek, 2001) The estimated Uniaxial Compressive Strength associated with each rock strength term is based on the field strength index test for intact rock samples as follows.

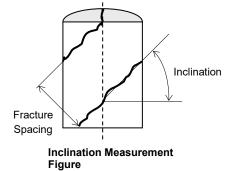
•	Extremely Strong	>36,000 psi	Specimen can only be chipped with a geological hammer.
٠	Very Strong	15,000 - 36,000 psi	Specimen requires many blows of a geological hammer to fracture it.
٠	Strong	7,500 - 15,000 psi	Specimen requires more than one blow of a geological hammer to fracture it.
•	Medium Strong	3,500 - 7,500 psi	Specimen cannot be peeled with a pocket knife; can be fractured with one blow from a geological hammer.
•	Weak	700 - 3,500 psi	Specimen can be peeled with a pocket knife with difficulty; shallow indentation made by firm blow with point of a geological hammer.
•	Very Weak	150 - 700 psi	Material crumbles under firm blows with point of a geological hammer; can be peeled with a pocket knife.

Weathering (modified from ACOE, 1994; and USBR, 2001)

	•	
•	Fresh	Mineral crystals appear bright and show no discoloration. Fractures show little or no staining on their surfaces. Discoloration does not extend into intact rock.
•	Slightly Weathered	Rock is generally fresh except along fractures. Some fractures are stained and discoloration may extend up to 0.5 inches into rock.
•	Moderately Weathered	Significant portions of rock appear dull and discolored. Rock may be significantly weaker than in its fresh state near fractures. Soil zones of limited extent may occur along some fractures.
•	Highly Weathered	Rock appears dull and discolored throughout. Majority of rock mass is significantly weaker than in its fresh state. Isolated zones of stronger rock and/or soil may occur throughout.
•	Severely Weathered	Significant portions of rock mass essentially weathered to soil. Rock fabric may still be discernable (i.e., saprolite). Isolated zones of stronger rock may occur locally. Quartz may be present as hard, fractured dikes or veins.

Fracturing (from ACOE, 19	994)	Color (from Munsell Color System; and GSA, 1995) Color descriptions include a	
Very Slightly Fractured	> 6.5 ft	primary color and up to two shade or secondary color modifiers, and may also include a color pattern term to define the relationship between multiple colors.	
Slightly Fractured	2 ft - 6.5 ft 8 inch - 2 ft	Shade: Light, Dark	
Moderately Fractured Highly Fractured	2.5 inch - 8 in	Secondary: Blackish, Brownish, Grayish, Greenish, Reddish, Yellowish, Orangeish Primary: Black, Brown, Gray, Green, Red, Yellow, Orange, White	
Intensely Fractured	< 2.5 in	Pattern: and, to, with mottles of, with speckles of, with streaks of, with bands of	

- **Recovery** is defined as the total length of recovered core in a core run divided by the total length of the core run, times 100 percent. A core run may be any depth interval of concern. Only natural fractures are considered for determining the length of core pieces. Mechanical breaks formed during or after coring do not count against the length determination. The length of recovered core pieces is measured along the core axis, between fracture midpoints.
- **RQD** (ASTM D6032, Deere & Deere, 1988, 1989) is defined as the total length of core pieces at least four inches long recovered from a core run divided by the total length of the core run, times 100 percent. A core run may be any depth interval of concern. Only natural fractures are considered for determining the length of core pieces. Mechanical breaks formed during or after coring do not count against the length determination. The length of recovered core pieces should be measured along the core axis, between fracture midpoints. Core pieces that are highly to severely weathered, very weak, or contain numerous pores should not count toward RQD.


SUPPLEMENTAL ROCK DESCRIPTIVE TERMS

In addition to the basic rock descriptive elements provided on the preceding Descriptive Criteria for Rock Core Logging sheet, rock descriptions may include the following supplemental descriptive elements depending on project performance objectives and available information.

Bedding Thickness & Inclination Bedding is defined as the layered arrangement of sediment deposits in sedimentary rock. Bedding thickness is the average perpendicular distance between bedding surfaces. Bedding thickness intervals follow Bieniawski (1989). Inclination is measured in degrees from a plane perpendicular to the core axis (see Inclination Measurement Figure shown below).

Very Thickly Bedded	> 6.5 ft
Thickly Bedded	2 ft - 6.5 ft
Medium Bedded	8 inch - 2 ft
Thinly Bedded	2.5 inch - 8 inch
Very Thinly Bedded	< 2.5 inch

Foliation Character & Inclination Foliation is defined as the planar arrangement of textural features in metamorphic rock. Inclination is measured in degrees from a plane perpendicular to the core axis (see Inclination Measurement Figure).

Strongly Foliated	Foliation is easily discernable throughout.
Moderately Foliated	Foliation is discernable with some difficulty.
Poorly Foliated	Foliation is generally not discernable.

Fracture Set Data Individual fractures or fracture sets may be characterized by the following descriptive elements, when applicable and discernable: fracture type, inclination (as per Inclination Measurement Figure above), average spacing, roughness and infilling condition. An example fracture set data description for an individual stratum is: *4 joints at 80-90°, moderately spaced, slightly rough, with spotty iron staining and partially filled with pyrite*. If fractures are rare, they can be described individually by listing the depth, followed by the descriptive terms in this section.

FRACTURE TYPE

Fracture	Any natural break in rock; 'Fracture' is the general term used for individual breaks that do not fall into any of the following fracture-type categories
Joint	A relatively planar fracture without shear displacement; occurs with other similarly oriented joints generally at regularly spaced intervals
Shear	A fracture along which differential movement has taken place parallel to the surface (i.e., shear displacement) sufficient to produce slickensides or polishing
Fault	A major fracture along which there has been appreciable shear displacement accompanied by gouge and/or a severely fractured zone
Bedding Fracture	A fracture along a bedding plane
Foliation Fracture	A fracture along a foliation plane
Vein Fracture	A fracture along the contact of an intrusive vein

Average Spacing	(NRCS	s, 2001)	Infilling Condition	
Very Widely Spa	aced	> 6.5 ft	Coverage	Туре
Widely Spaced		2 ft - 6.5 ft	Spotty Filling of (\leq 50% coverage)	Calcite
Moderately Spa	ced	8 inch - 2 ft	Partially Filled with (50 to 100% coverage)	Chlorite
Closely Spaced		2.5 inch - 8 inch	Filled with (100% coverage)	Clay
Very Closely Sp	aced	< 2.5 inch		Gypsum
				Iron Staining
Roughness (Bi	eniawski	i, 1989)		Manganese
Very Rough	- Most s	surface asperities extend > :	2 mm from the average planar surface.	Mica
Rough	- Most s	surface asperities extend 0.	5 to 2 mm from the average planar surface.	Pyrite
Slightly rough	- Most s	surface asperities extend <	0.5 mm from the average planar surface.	Quartz
Smooth	- Gener	rally smooth to touch with fe	w surface asperities.	Talc

References for Rock Descriptive Terms:

ASTM D6032, Standard Test Method for Determining Rock Quality Designation of Rock Core

- Banks, B.K. (2005). Material Unit-Based Rock Core Logging for Geotechnical Applications. *GeoFrontiers Proceedings*
- Bieniawski, Z.T. (1989). Engineering Rock Mass Classifications. New York: Wiley
- Deere, D.U. and Deere, D.W. (1988). "The Rock Quality Designation (RQD) Index in Practice," *Rock Classification Systems for Engineering Purposes*, ASTM STP 984, Louis Kirkaldie, Ed., ASTM, pp. 91-101
- Deere, D.U. and Deere, D.W. (1989). *Rock Quality Designation (RQD) After Twenty Years*, U.S. Army Waterways Experiment Station, Contract Report GL-89-1, Geological Society of America, 1995, Rock-Color Chart
- Hoek, E., *Rock Engineering* (Course Notes). (2001). <u>http://www.rocscience.com/hoek/PracticalRockEngineering.asp</u>
- Martin, Ray E. (1977). Estimating Foundation Settlements in Residual Soils. *Journal of the Geotechnical Engineering Division*, ASCE. Vol 103. No GT3. Proc. Paper 12806, pp. 197-212

Munsell Color System

- U.S. Army Corps of Engineers. (1994). Engineer Manual 1110-1-2908
- USBR Engineering Geology Field Manual. (2001). http://www.usbr.gov/pmts/geology/
- USDA, NRCS. (2001). *National Engineering Handbook*, Part 628 Dams, Field Procedures Guide for the Headcut Erodibility Index, <u>http://www.info.usda.gov/CED/ftp/CED/neh628-ch52.pdf</u>

BORING LOGS, B-51 THROUGH B-751

5	Schnabel engineering	BOREHOLE LOG	Client:	Pitts	ylvania	•				g Num			336.5	B-5
ntractor:	Connelly & Associates		Location	n: Chat ate Star		A 01/09/2023				act Nu oundv			2221	0031.1
ntractor Fo nabel Rep uipment: hthod: 4- No	oreman: J. Martinez Dresentative: E. Unobe Diedrich D-70 (Track) 1/4" ID Hollow Stem Auger Q Double Barrel		Di Co X: Pl H	ate Ende pordination 11210 unge, B ole Elev	ed: te Syste 0014.0 fi earing: ation:	01/19/2023 m: VA State Plane t Y: 3469256. 90°, NA 708.4 ft	4 ft -	Durin Comp After Obser	g Drilli letion Drillin	ng: : g:		11/23 0	3:41	49.6
	e: Auto Hammer (140 lb)			otal Dep		97.6 ft								
ELEVATION (ft)	MATERIAL DESCRIP	PTION	nscs			SAMP	LE DATA REC in. (%)	BLOW COUNTS	мс	LL	PI	< #200 (%)	REM	MARKS
708	0.0 - 0.3 ft: Topsoil, 3 inc 0.3 - 6.0 ft: FILL, sample SAND, moderately micad fine to coarse sand, moi reddish brown, estimate 45% fines, estimated 5 - to coarse gravel 4.0 ft: <5% fine to coarse gr	d as SILTY ceous, st, ed 30 - 10% fine	SM		F2	S-01, 24 in 0.0-2.0 ft S-02, 24 in 2.0-4.0 ft S-03, 24 in 4.0-6.0 ft	16 (67) 14 (58) 16 (67)	3-3-4-5 N=7 2-5-6-8 N=11 5-5-6-6 N=11	22			49		
702 - 701 - 701 - 700 - 7	fine to coarse sand, moi brown to reddish brown estimated 30 - 45% fine grained sand, estimated to coarse gravel, low pla 8.0 - 24.9 ft: FILL, sample	ceous, st, grayish h, to coarse l <5% fine asticity ed as ceous, st, h brown, s,	ML		F1	S-04, 24 in 6.0-8.0 ft S-05, 24 in 8.0-10.0 ft	22 (92) 21 (88)	3-4-5-7 N=9 4-6-9 10 N=15						

	5	Schnabel Engineering	BOREHOLE LOG	Client:	Pitts	ylvania				Boring					B-5
ntra	ctor:	Connelly & Associates		Location	n: Chat ate Star		01/09/2023			Contra	act Nu oundv			2221	0031.1
		eman: J. Martinez			ate Star		01/19/2023		Durin				1/23 0	2.41	49.6
		esentative: E. Unobe					WA State Plane	South		-	-	01/1	1/25 0	5.41	49.0
	nent:	Diedrich D-70 (Track)					t Y: 3469256	.4 ft	Comp						
etho		[/] 4" ID Hollow Stem Auger Double Barrel	ſ		lunge, B ole Elev	-	90° <i>,</i> NA 708.4 ft		After	Drillin	g:				
mm		Auto Hammer (140 lb))		otal Dep		97.6 ft		W Obser	vation	Well:				
E	z				TRATU	м	SAME	PLE DA							
	ELEVATION (ft)	MATERIAL DESCRI						T		мс	LL	Ы	< #200	DEN	/ARK
DEPTH (ft)	S □		non	uscs	SYMBOL	UNIT	DESCRIPTION	RE				••	(%)	NL.	
	ш			>	SY	2		in. (%) COUNTS						
-	698														
-	090														
_	-														
	-						S-06, 24 in 10.0-12.0 ft								
_	697						10.0-12.0 10	02	N=20						
-	-														
2-		12.0 ft: 30-45% fines													
-	696 —														
_															
3-	-						5 07 24 in	16	5 5-7-8						
,	-						S-07, 24 in 12.0-14.0 ft								
-	695—								N=15						
-	-														
1-		14.0 ft: slightly micaceous													
-	694 —	0.1													
-	-														
5-	-			SM		F2	S-08, 24 in	15	8-10-11						
				5141		12	14.0-16.0 ft		2) 13						
-	693 <u> </u>								N=21						
-	-														
ĵ	-														
-	692 —														
-	-						T								
7-							S-09, 24 in	14	7-11-10						
-	691						16.0-18.0 ft								
-	- 160								N=21						
		17.0 th acetains	anta												
3	=	17.9 ft: contains rock fragm	ents					1							
-	690 —														
							T								
9-	-						S-10, 24 in								
-	689						18.0-20.0 ft	: (83	3) 12 N=21						
_	-														
_	-														

Annabe Juipm Jethod Amme (J) HLL J J	tor For el Reprisent: d: 4-1, NQ er Type (H) 688	Connelly & Associates eman: J. Martinez esentative: E. Unobe Diedrich D-70 (Track) /4" ID Hollow Stem Auger Double Barrel : Auto Hammer (140 lb) MATERIAL DESCRII	r)	D D C X P H T	ate St ate En oordir : 112 lunge, ole Ele otal De	nate Syste 10014.0 Bearing: evation: epth:	0 em: ft Y : 9 7	01/09/2023 01/19/2023 VA State Plane 3 3469256. 00°, NA 708.4 ft 07.6 ft			uring ompl fter [Gr ; Drilli etion: Drilling	ng:	vater l	Levels L1/23 0:		49.6 f
ntract chnabe guipm ethod amme (t) 1	tor For el Reprisent: d: 4-1, NQ er Type (H) 688	eman: J. Martinez esentative: E. Unobe Diedrich D-70 (Track) /4" ID Hollow Stem Auger Double Barrel : Auto Hammer (140 lb)	r)	D C X P H Tr	ate En oordir : 112 lunge, ole Ele otal De	nded: nate Syste 10014.0 f Bearing: evation: epth:	0 em: ft Y : 9 7	01/19/2023 VA State Plane 3469256. 00°, NA 708.4 ft			ompl fter [s Drilli etion: Drilling	ng:			3:41	49.6 f
	el Repriver A-1, NQ Er Type NQ (++) (++) (++) (++) (++) (++) (++) (++	esentative: E. Unobe Diedrich D-70 (Track) /4" ID Hollow Stem Auger Double Barrel : Auto Hammer (140 lb)	r)	C X P H Tr	oordir : 112 lunge, ole Ele otal De	nate Syste 10014.0 Bearing: evation: epth:	em: ft Y : 9 7	VA State Plane : 3469256. 00°, NA 708.4 ft			ompl fter [etion: Drilling				3:41	49.61
	ent: d: 4-1, NQ er Type NO (#) 6888	Diedrich D-70 (Track) /4" ID Hollow Stem Auger Double Barrel : Auto Hammer (140 lb))	P H Tr	lunge, ole Ele otal De	Bearing: evation: epth:	: 9 7	90° <i>,</i> NA 708.4 ft	4 ft		fter [Drilling					
	DA Service 12 Service 12 Se	Double Barrel : Auto Hammer (140 lb))	H T 2	ole Ele otal De STRAT	evation: epth:	7	'08.4 ft		\square		-	g:				
DEPTH (#)	EFERATION EFERATION (#) (#) (#)	: Auto Hammer (140 lb)		ıד ب	otal De	epth:					bserv						
DEPTH (ft)	ELEVATION (ft)				STRAT	-		97.6 IL				/ation	Well:				
	688	MATERIAL DESCRII	PTION			UM			I								
	688	MATERIAL DESCRI	PTION	uscs	F			SAMP	LE DA	TA				1	<		
	688			nsc	Ö	F			REC	BLC	\ \\/	мс	LL	PI	#200	REN	ARKS
					SYMBOL	UNIT	D	DESCRIPTION	-	6) COU				1	(%)		
					S I					-							
1 														1			
-														1			
-	-													1			
7.	_							S-11, 24 in	15	8-12				1			
	687 —							20.0-22.0 ft	(62)) 1 N=2				1			
-	-													1			
2	-													1			
	_													1			
	686 —					F2								1			
-	_													1			
3	-							S-12, 24 in	21	11-14	1-15			1			
7	_							22.0-24.0 ft						1			
=	685									N=	29			1			
Ξ	_													1			
4-	_													1			
-														1			
-	684													1			
-		24.8 ft: quartz gravel bed												1			
5-		24.9 - 28.0 ft: FILL, sam	pled as					S-13, 24 in	20					1			
_	683	SANDY SILT, slightly mic	•					24.0-26.0 ft	(83)) 1 N=:				1			
_	-	fine to coarse sand, mo									15			1			
-	_	brown to reddish brown												1			
6-		estimated 30 - 45% fine grained sand, estimated												1			
-	682 -	to coarse gravel, low pla		ML		F1								1			
Ξ		gravels are rock fragme												1			
7-								S-14, 24 in	24	5-9-	.11			1			
' <u>-</u>	-							26.0-28.0 ft						1			
=	681 —								(/ N=	20			1			
-	=													1			
8-		20.0.40.0.5												1			
7		28.0 - 40.0 ft: FILL, samp SILTY SAND, highly mica												1			
-	680	fine to coarse sand, mo												1			
-	_	reddish brown to grayis												1			
9-		estimated 15 - 25% fine	es,			F2		S-15, 24 in	22					1			
_	679	estimated 5 - 10% fine t						28.0-30.0 ft	(92)) 1 N=2				1			
		gravel, contains rock fra plagioclase feldspar	agments,							IN=.	~			1			
=		piagiociase ieiuspai												1			
+				-	-1:1:1-1												
)ttor	n of h	oring at 97.6 ft. Borir	ng termir	nated a	۔ مام t	nted de	n+h	ı	I								

	5	Schnabel Engineering	BOREHOLE LOG	Project Client:	Pitts	sylvania	Со	eek Watersh unty		2111 ZA			g Num			2224	B-5
ontra	ictor:	Connelly & Associates			n: Chai Date Sta	tham, VA rted:		1/09/2023					act Nu oundv		: Levels	2221	0031.1
chnat quipn 1etho	bel Repr nent: od: 4-1, NQ	eman: J. Martinez esentative: E. Unobe Diedrich D-70 (Track) /4" ID Hollow Stem Auger Double Barrel : Auto Hammer (140 lb)	r	C X P F	: 1121	nte Syste 0014.0 ft Bearing: vation:	m: t Y 9 7	1/19/2023 VA State Plane 3469256. 0°, NA 08.4 ft 07.6 ft			During Comp After I Obser	letion: Drillin;	g:	01/2	11/23 0	3:41	49.6
)		STRATU			SAMP		\bigcirc							
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	PTION	nscs	SYMBOL	UNIT	D	ESCRIPTION	REC in. (S		LOW UNTS	МС	LL	PI	< #200 (%)	REN	/ARKS
	678																
1	677							S-16, 24 in 30.0-32.0 ft	21 (88)	9-6-8 10 ∛=14						
2	676																
3	675							S-17, 24 in 32.0-34.0 ft	19 (79		-9-18 20 √=27						
4	674																
5	673			SM		F2		S-18, 24 in 34.0-36.0 ft	22 (92)	-16-19 21 √=35						
6	672 -	36.0 ft: no rock fragments, fines, <5% fine to coarse g	30 - 45% ravel														
7	671							S-19, 24 in 36.0-38.0 ft	16 (67)	-5-14 10 √=19	13			37		
8	670 -																
9	669							S-20, 24 in 38.0-40.0 ft	24 (100	D)	10-10 11 √=20						
	mofb	oring at 97.6 ft. Borii	ng termir	hated a			nt ¹	 								leet 4	

	5	Schnabel Engineering	BOREHOLE	Project: Client:	Pitts	sylvania	•	Ju Dun			g Num				B-5
ontra		Connelly & Associates reman: J. Martinez resentative: E. Unobe		Da	ate Sta ate Enc	rted: ded:	A 01/09/2023 01/19/2023 CM: VA State Plane	South	Durin	Gr g Drilli	•	vater			0031.1 49.6 1
letho	NQ	Diedrich D-70 (Track) /4" ID Hollow Stem Auge Double Barrel : Auto Hammer (140 lb		PI He	unge, I	Bearing: vation:	t Y: 3469256. 90°, NA 708.4 ft 97.6 ft	-	Comp After Obser	Drillin	g:				
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	PTION	nscs			SAMP	LE DAT	A BLOW COUNTS	мс	u	PI	< #200 (%)	REN	MARKS
.1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	668	40.0 - 44.0 ft: FILL, sam SANDY SILT, moderately micaceous, fine to coar moist, orangish brown brown, estimated 30 - 4 coarse grained sand, es <5% fine to coarse grav plasticity	/ se sand, to reddish 45% fine to stimated	ML	20 20 20 20 20 20 20 20 20 20 20 20 20 2	 F1	S-21, 24 in 40.0-42.0 ft	19 (79)	5-8-9 11 N=17					42.0 -	44.0 ft
3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	666						S-22, 24 in 42.0-44.0 ft	24 (100)	4-6-10 10 N=16					Exterio S-22 c trace a of free moist	or of arries amour
4 1 5	664	44.0 - 48.0 ft: FILL, sam SILTY SAND, highly mica fine to coarse sand, mo reddish brown to orang estimated 30 - 45% fine estimated 5 - 10% fine gravel 44.0 ft: perched water table	aceous, pist, gish brown, es, to coarse				S-23, 24 in 44.0-46.0 ft	18 (75)	5-8-10-9 N=18						
6 	662			SM		F2	S-24, 24 in 46.0-48.0 ft	22 (92)	5-8-9 11 N=17	18			42		
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	660	47.8 - 48.0 ft: organic odor 48.0 - 54.0 ft: FILL, sam CLAYEY SAND, slightly n fine to coarse sand, mo greenish gray, estimate fines, estimated 5 - 109 coarse gravel, organic c	pled as nicaceous, oist, dark d 15 - 25% % fine to			$\overline{\sim}$	S-25, 24 in 48.0-50.0 ft	24 (100)	6-5-5 12 N=10	28					

	5	Schnabel Engineering	BOREHOLE	Project Client:	Pitts	ylvania	Со	reek Watersh unty		27		g Num				B-5
					n: Chat			1/00/2022			I	act Nu			2221	0031.10
	ctor: ctor For	Connelly & Associates eman: J. Martinez			ate Star ate End			01/09/2023 01/19/2023				oundv				
		esentative: E. Unobe						VA State Plane	- South	Durin	g Drilli	ing:	01/1	11/23 (03:41	49.6 f
	nent:	Diedrich D-70 (Track)				•		/: 3469256.		Comp	letion	:				
		4" ID Hollow Stem Auge	r	P	lunge, B	earing:	ç	90°, NA	-	After	Drillin	g:				
		Double Barrel		1	lole Elev			708.4 ft		(W) Obser		-				
amm	er Type	Auto Hammer (140 lb))	T T	otal Dep	oth:	2	97.6 ft		Ubser	vation	vven.		1	1	
£	z				STRATUI	М		SAMP	le dat	A				<		
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	PTION		Ъ				_		мс	ш	Ы	#200	REM	MARKS
Ë	۲ ۲			uscs	SYMBOL	UNIT	0	DESCRIPTION	REC	BLOW COUNTS				(%)		
	ш				SYI	2			m. (%							
-	-				///											
_	658 —				///											
-	-				///											
1-	-				///			S-26, 24 in	20	6-7-8-9	19					
-					///			50.0-52.0 ft	(83)	N=15						
-	657 —															
	-				///											
2-]	-	52.0 ft: wet		SC	///						-					
-	656 —				///											
-	000				///											
-	-															
3–	_				///			S-27, 24 in	12	4-5-6-7	23					
-	655				//			52.0-54.0 ft	(50)	N=11						
_	-				//											
-	_				//											
4-	-	54.0 - 56.0 ft: FILL, sam	pled as													t: Drilli
-	654 —	SILTY SAND, slightly mic													resum 01/11	
-	=	fine to coarse sand, mo				F2									01/11	./25
_]	-	reddish brown, estimat														
5-	-	45% fines, estimated <5 coarse gravel	5% fine to	SM				S-28, 24 in	24	7-7-6-6 N=13	27	40	10	49		
-	653	coarse graver						54.0-56.0 ft	(100)							
-	-															
6	_															
° =	-	56.0 - 58.0 ft: No recove	ery													
_	652 –															
_			مامما م -													
7-	_	58.0 - 58.7 ft: FILL, sam CLAYEY SAND, fine to co						S-29, 24 in	0	5-3-2-2						
-		wet, reddish brown, est						56.0-58.0 ft	-	N=5						
_	651	- 25% fines														
-	-	58.7 - 59.2 ft: FILL, sam														
8-		SILTY GRAVEL, fine to co			1 .//.					_	-					
-	650	grained gravel, grayish v reddish brown, estimat		sc	///											
-	330 -	25% fines	cu 13 -		///											
4		59.2 - 65.0 ft: FILL, sam	pled as		i si i											
9-	4	SANDY LEAN CLAY, mois	st to wet,	GM				S-30, 24 in	24	11-10-8-9						
	649	reddish brown, estimat			7/7		1	58.0-60.0 ft	(100)	N=18						
Ţ	-	45% fine to coarse grain				F1										
-		estimated 5 - 10% fine t gravel, medium plasticit														
_	_	Braver, meanum plastici	~ 7	1	<u> </u>						L	L	L	1	1	
\neg																

	5	Schnabel Engineering	BOREHOLE	Project: Client:	Pittsy	Ivania	Со	reek Watersh unty				Boring					B-5
					n: Chath			4 /00 /2022				Contra				2221	0031.10
	actor:	Connelly & Associates eman: J. Martinez			ate Start ate Ende			01/09/2023 01/19/2023	ŀ				oundv				
		esentative: E. Unobe						VA State Plane	South	\leq	During	g Drilli	ng:	01/1	1/23 0	3:41	49.6 f
	nent:	Diedrich D-70 (Track)				•		/: 3469256.			Comp	letion:	:				
		/4" ID Hollow Stem Auge	r		lunge, Be						After I	Drilling	2:				
		Double Barrel			lole Eleva			708.4 ft					-				
amn	er Type	: Auto Hammer (140 lb)	T	otal Dep	th:	9	97.6 ft		\bigcirc	Obser	vation	well:				
£	z			:	STRATUN	Λ		SAMP	LE DA	TA							
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	ΡΤΙΟΝ		L							мс	LL	Ы	< #200	REN	MARKS
EP) EV			uscs	SYMBOL	UNIT	D	DESCRIPTION	REC	-	LOW				(%)		
					SYN				in. (%	%) CO	UNTS						
-	648 —																
-	-																
1-								S-31, 24 in	22	1-2	2-3-3						
Ì	-							60.0-62.0 ft			N=5						
-	647 —																
	-																
2-										_							
-	646 —																
-	040			CL		F1											
-	-																
3–	_							S-32, 24 in	14		4-5-5						
-	645							62.0-64.0 ft	(58) [N=9						
_	-				I/A												
_					I/A												
4	-				I/A												
-	644 —				I/A												
-	-				I/A												
	_				Y/A			C 22 24 in	24		2 4 2						
5_	-	65.0 - 65.7 ft: FILL, sam	•					S-33, 24 in 64.0-66.0 ft	24 (100		·3-13 32						
-	643	CLAYEY SAND, slightly n		SC	//	F2		04.0-00.0 11	(100		l=16						
-	Ξ	fine to coarse sand, we			_///												
6-		brown, estimated 30 - 4 estimated <5% fine to c		/													
-	-	gravel		/													
-	642 —	65.7 - 68.0 ft: POORLY (-													
-	-	SAND WITH SILT, fine to															
7-		sand, wet, grayish brow estimated 5 - 10% fines		SP-SN	"	B2		S-34, 24 in	21	12-	23-26	7			14		
-	641	rock fragments, residua						66.0-68.0 ft	(88		18						
-	- 140			_							I=49						
-	=	68.0 - 69.2 ft: DISINTEG		V													
8-	4	ROCK, sampled as POO GRADED SAND WITH SI			5A					+							
	640 —	coarse sand, wet, brow															
-	-	estimated 5 - 10% fines		_ SP-SN	1												
	-	69.2 - 70.0 ft: DISINTEG						ເລະ ລາ:		1.2	12 14						
9-		ROCK, sampled as SILTY				C		S-35, 23 in 68.0-69.9 ft	22 (95		-42-41 0/5"						
	639	fine to coarse grained g grayish brown to green						55.5 05.5 1	(33	/	v=83						
-		estimated 15 - 25% fine		GM													
-	-	rock fragments	.,														
		-			(1	1		1					1			

	5	Schnabel		Project: Client:		ylvania		eek Watersh unty			Boring	g Num	ber:			B-5 :
		ENGINEERING	LOG	Location		tham, V	Ά	-			Contra				2221	0031.10
	ictor:	Connelly & Associates			ate Sta			1/09/2023				oundv	ater	evels		
		eman: J. Martinez esentative: E. Unobe			ate End			01/19/2023 VA State Plane	South	2 During	g Drilli	ng:	01/1	.1/23 0	3:41	49.6 f
	nent:	Diedrich D-70 (Track)				•		3469256.		Comp	letion:	:				
		/4" ID Hollow Stem Auge	r			Bearing:				🗶 After I	Drilling	z:				
		Double Barrel			ole Elev			'08.4 ft								
lamm	er Type	: Auto Hammer (140 lb)	To	otal De	oth:	9	97.6 ft		Obser	vation	wen:				
£	N			s	TRATU	м		SAMP	LE DAT	A				<		
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	PTION	s	ОГ	F	t		REC	BLOW	мс	LL	PI	#200	REN	/IARKS
DEP	ELEV			uscs	SYMBOI	UNIT	D	ESCRIPTION	-					(%)		
		70.0 - 72.0 ft: SILTY SAN		-	S					,						
-	638 —	GRAVEL, fine to coarse														
-	-	reddish brown to grayis														
-	-	estimated 15 - 25% fine						S-36, 21 in	12	12-10-18						
71-	-	estimated 15 - 25% fine	e to coarse	SM		B2		70.0-71.8 ft		50/3"						
-	637 —	gravel, residual								N=28						
-	-															
, 1	_	72.0 - 72.6 ft: DISINTEG		V												
72	-	ROCK, sampled as SILTY		_			X	S-37, 2 in		50/2"						
_	636 -	wet, reddish brown, es - 25% fines	umated 15	GM		C		72.0-72.2 ft		N=100						
_		72.6 - 94.0 ft: GNEISS, s	strong to ver	y v									7	2.6 ft:	Tempo	orary N
73 –	-	strong, slightly weathe												asing s	eated	into
-		moderately fractured (r	ock.		
_	635	slightly fractured (2 - 6. white, strongly foliated		ray to												
=	-	hornblend, feldspar, qu		. fine												
74 –	-	to coarse grained	ar (1) Barriet,	,e												
=	634 —	72.6 - 73.4 ft: intensely to I highly to moderately weath														
-	=	73.4 - 74.8 ft: highly to mod												4.2 - 7		
-	-)%), iroi
75 –	-							CORE	55	23	3.2			ough, p	0,	slightly
=	633 —							C-01, 60 in	(92)	(38)				ougn, p	nanai	
-	-							72.6-77.6 ft								
76	-															
10 <u>-</u>	-															
_	632													'6.3 ft: . artial (
-	-													ron-oxi		
77 –	-															planar
-																
-	631—													2.6 - 8	2 6 ft ·	100%
-	-						$ \top$							2.6 - 8. eturn v		100%
78 –	-															
=	630 -															
-	-															
79-																
-	629 _															
	-															
_	-															
									REC(%				I T			
									REC(%	5) RQD(%)	DRILL RA	TE LUGEO	N			

		Schnabel	BOREHOLE	Project: Client:		-	Creek Watersh County	iea Da	am ZA	B	Boring	Numbo	er:		B-5
		ENGINEERING	106	Location	-		-			c	Contrac	t Num	ber:	2221	0031.10
chnab quipn	ctor For pel Repr nent: d: 4-1	Connelly & Associates reman: J. Martinez resentative: E. Unob Diedrich D-70 (Track) /4" ID Hollow Stem Aug	e	Da Co X: Pl	11210 unge, Be	ed: e Syste 014.0 fi earing:	01/09/2023 01/19/2023 m: VA State Plane Y: 3469256 90°, NA			omple	Drillin	g:	ter Leve 01/11/23		49.6 f
amm		Double Barrel : Auto Hammer (140 l	b)		ole Eleva Ital Depi		708.4 ft 97.6 ft		(W) o	bserv	ation V	Vell:			
		· · · · · ·		1	STRA			SA	MPLE D	ATA					
DEPTH (ft)	ELEVATION (ft)	MATERIAL DI	ESCRIPTION		SYMBOL	UNIT	DESCRIPTION	RE in.		RQD . (%)	DRILL RATE (min/ft)	PACK	ER DIS	REMAR SCONTIN	
81	628	82.6 - 83.8 ft: intensely fr	actured, highly	to			CORE C-02, 60 in 77.6-82.6 ft	6) (10		60 100)	1.8	92	break	ft: Mecho ; 50°, bro foliation	oken
83 	625	moderately weathered, m	iedium strong to	o strong		D2	CORE C-03, 60 in 82.6-87.6 ft	5. (9		17 28)	1.7		(1009 staini plana weatl 84.5 j (1009 staini plana	ft: Joint, 2 6), iron-o ng, very 1	xide tly roug 20°, fille xide rough,
36	622	88.6 - 94.0 ft: slightly to v slightly weathered to fres		tured,									returi 85.7 j (1009 staini 86.7 j 65°, f: oxide rough mode 87.6 - joint, 100%	n water. ft: Joint, 1 6), iron-o ng, rougi ft: Foliatii illed (100 staining, n, planar, rately wu - 88.2 ft: 75°, part), iron-o ng, slighi	15°, fill xide h, plan on join 0%), iro %), iro slightl eathere Foliatic tial (50 kide
	619 	ring at 97.6 ft. Boring	terminated	at sele		pth								Sheet 9	

		ENGINEERING	LOG			ylvania										
			L	ocation	: Chat	ham, V					С	ontra	t Num	be	r: 2221	0031.10
	actor:	Connelly & Associates			te Star)1/09/2023	-	1					Levels	
		r eman: J. Martinez r esentative: E. Unob	e		te End	ea: te Syste		01/19/2023 VA State Plane S	South	$\mathbf{\Sigma}$	During	Drillin	g:	01/	/11/23 03:41	49.6 ft
	ment:	Diedrich D-70 (Track)				0014.0 f					Comple	tion:				
Netho		/4" ID Hollow Stem Aug	er			earing:					After Di	rilling:				
Hamn		Double Barrel : Auto Hammer (140 l	b)		ole Elev tal Dep			708.4 ft 97.6 ft		(\mathbf{W})	Observa	ation \	Well:			
			67					//.01t			D 4 T 4					
DEPTH (ft)	ELEVATION (ft)					ATUM			SA	MPLE	DAIA				REMAR	KS
Ë	EVAT (ft)	MATERIAL DI	ESCRIPTION		SYMBOL	UNIT		DESCRIPTION	RE	c	RQD	DRILL RATE (min/ft)	PACK	ER	DISCONTIN	
ā	Ш				SYN	5		Lockir How	in. ([%) i	in. (%)	DRILL (mi	Lugeons			
_	=							CORE	56		33	3.3		Ι		
-	618							C-04, 60 in	(93	3)	(55)					
_	-							87.6-92.6 ft								
91 –	-														90.8 - 91.0 ft:	
_	617 —														joint, 60°, filleo iron-oxide stai	
-															slightly rough,	
92 -	-															
52	-															
Ξ	616 —														07.07.07.04	N
-	_												55		87.6 - 97.6 ft: return water.	NO
93 –	-															
_	615 —															
-	-															
94 —															94.0 ft: Contac	ct ioint
	-	94.0 - 94.6 ft: SCHIST,		um		D1									70°, spotty (<5	
_	614	strong, highly weathe fractured (<2.5 in), bla		IV,											iron-oxide stai	
_	1	strongly foliated, bioti	ite, quartz, fel	dspar /											slightly rough, 94.2 ft: Joint, 2	
95	-	94.6 - 97.6 ft: GNEISS,		lightly				CORE	60	C	48	2.3			(100%), iron-o	
_	613	weathered to fresh, w fractured (> 6.5 ft), bla		ked				C-05, 60 in	(10	0)	(80)				staining, slight	
-	-	white, strongly foliate						92.6-97.6 ft							planar, moder weathered	ately
96 —		feldspar													weatherea	
	612					D2										
	-															
<u> </u>	-															
97	-															
-	611 -															
							1									
98 –	-															
	610 —															
99 –	-															
-	609 —															
-	-															
					1 1	1		1		1			1			

		Schnabel Engineering	AUGER PROBE	Project: Client:		rystone ylvania		eek Watersh untv	ed D	am 2/	۱.	Borin	g Num	ber:		E	8-51A
		ENGINEERING	LOG	Location		-		unty				Contr	act Nu	mber	:	2221	0031.100
Contra		Connelly & Associates			ate Star		0	01/16/2023				G	round	water	Levels		
		reman: C. Gudiel			ate End			01/18/2023		\square	Durin	g Drilli	ing:				
		resentative: E. Unobe						VA State Plane		-	Comp	lation					
	ment:	Diedrich D-70 (Track)						: 3469256.	.0 ft								
Meth	od: 4-1	./4" I.D. Hollow Stem Aug	er		unge, в ple Elev	earing:		'08.9 ft			After	Drillin	g:				
Hamn	ner Type	• NA			tal Dep			53.2 ft		(W)	Obser	vation	Well:	03/0)4/23 (02:30	53.4 ft
- Tarini																	
Œ	NO			S	TRATUI	М		SAMP	LE D	ATA					<		
E	E)	MATERIAL DESCRIPTION		<u> </u>							мс	LL	PI	#200	RE	MARKS	
DEPTH (ft)	ELEVATION (ft)			USCS		D	DESCRIPTION REG			BLOW 6) COUNTS				(%)			
	_				Σ			1	(/0/ 00							
		0.0 - 63.2 ft: See Boring															53.2 ft:
1-	708	Soil Material Descriptio	ns.														Probe
1																samp	
2-	707 -																Mount
	706 -																meter
3																install	ed.
	705 -																
"]																	
3 4 5 6 7 8 8 9	704																
6	703 -																
	702																
7-	702 -																
	701-																
8																	
q_	700-																
10	699-																
=								UD-01, 24	24	1							
11-								in	(10			16	35	4	38		
12-	697							10.0-12.0 ft		<i>`</i>							
13	696 -							UD-02, 24	24								
								in 12.0-14.0 ft	(10	0)							
14-	695							12.0 17.0 1									
13 14 15																	
15-	694																
16	693 -																
16	093																
17	692 -																
18-	691																
19-	690																
	1 –																
20	689																
21-	699																
21-																	
															S	heet	1 of 3

		Schnabel Engineering	AUGER PROBE	Project: Client:		rrystone sylvania	Creek Watersh County	ned D	am 2A	•	Borin	g Num	ber:		E	8-51A
			LOG	Location	: Cha	tham, V	4			(Contra	act Nu	mber		2221	0031.100
Contra		Connelly & Associates			te Sta		01/16/2023					oundv	vater	Levels		
		reman: C. Gudiel resentative: E. Unobe			te End		01/18/2023 m: VA State Plane	South	\square	During	g Drilli	ing:				
	ment:	Diedrich D-70 (Track)				-	t Y: 3469256			Compl	letion	:				
		/4" I.D. Hollow Stem Aug	er			Bearing:				After [Drillin	g:				
						vation:	708.9 ft			Observ		-	02/0	04/23 0	2.20	53.4 ft
Hamn	ner Type	e: NA		То	tal De	oth:	63.2 ft		\odot	Observ	vation		05/0	,47230 	2.50	55.4 H
DEPTH (ft) ELEVATION (ft)				S	TRATU	М	SAMP	PLE D/	ATA					<		
E	(¥	MATERIAL DESCRI	PTION	s	OL	F		RE		LOW	мс	ш	Ы	#200	REM	/IARKS
DE	ELEY			uscs	SYMBOL	UNIT	DESCRIPTION			DUNTS			(%)			
=		0.0 - 63.2 ft: See Boring	P 51 for		S			· ·	· •							
	686															
23																
24	685															
-																
25	684															
26	683 -															
20																
27 -	682															
	681-															
28																
29	680 -															
30-	679															
31-	678															
32	677 -															
33	676															
=	1 -															
34	675															
25	674-															
35																
36	673															
	672															
37-	012															
38	673 672															
	670															
39-	0/0															
40	669															
41	669															
12	667 -															
42																
43-	666															
														S	neet	2 of 3

	,	Schnabel Engineering	AUGER PROBE	Project: Client:		-	vstone vania		eek Watersh unty	ed D	am 2/	4	Borin	g Num	ber:		E	B-51A
			LOG	Location	: Ch	ath	am, V	Α	-		1			act Nu			2221	0031.100
	actor: actor Fo	Connelly & Associates reman: C. Gudiel			ate St ate Er				1/16/2023 1/18/2023			D		roundv	vater	Levels		
		resentative: E. Unobe		C	oordii	nate	Syste	em:	VA State Plane			Durin	-	-				
	ment:	Diedrich D-70 (Track)	o.r				18.6 f aring:		: 3469256.	0 ft		Comp						
Meth	od: 4-	./4" I.D. Hollow Stem Aug	er		ole El				08.9 ft		_	After		-				
Hamn	ner Type	e: NA		Тс	tal D	eptl	า:	6	3.2 ft		(\mathbf{W})	Obser	vation	Well:	03/0	04/23 0	2:30	53.4 ft
æ	NO			9	TRAT	UΜ			SAMP	LE D/	ATA					<		
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	ΡΤΙΟΝ	S	30L		F			RE	СВ	LOW	мс	ш	PI	#200	RE	MARKS
DE	EE		uscs	SYMBOL		UNIT	D	ESCRIPTION			DUNTS				(%)			
	-	0.0 - 63.2 ft: See Boring	B-51 for		S													
45	664	Soil Material Descriptio	ns.															
46	663																	
40						ຶ												
47	662 -																	
48	661 -																	
49-	660																	
50	659																	
	658 -																	
51																		
52 -	657																	
53-	656																—	
54	655 -																	
55	654																	
56	653																	
56-																		
57	652								UD-03, 24 in	18			22	34	9	45	52	.8 - 62.8 ft:
57	651 -								56.0-58.0 ft	(75	<i>י</i> ו							zometer
									UD-04, 24	9							Scr	een.
59	650								in	(38								
60	649								58.0-60.0 ft									
61	648 -																	
-	-																	
62	647 -																	
63	-																	
	= =							1										
64	645																	
65	644																	
																S	heet	3 of 3

	5	Schnabel engineering	BOREHOLE LOG	Project: Cherrystone Creek Watershed Dam 2A Client: Pittsylvania County Location: Chatham, VA							Boring Number: 2221					
	ictor: ctor For	Connelly & Associates eman: B. Mullendore			ate Star ate Ende		01/11/2023 01/11/2023	-			oundv	water	.evels			
Schnabel Representative: P. Alani Equipment: Acker Rebel XL Method: 3-1/4" I.D. Hollow Stem Auger		er	Coordinate System: VA State Plane South X: 11210097.1 ft Y: 3469250.8 ft						During Drilling: Completion: After Drilling:			01/11/23 03:38				
amm	er Type	: Auto Hammer (140 lb)		ole Elev otal Dep		679.0 ft 48.1 ft			vation	-	03/0	4/23 0)2:45	34.0	
(#)	NOI		s	TRATU	м	SAMP	TA				<					
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	PTION	USCS SYMBOL UNIT		DESCRIPTION RE			MC	ш	PI	#200 (%)	REN	MARKS		
1	678	0.0 - 0.2 ft: Topsoil 0.2 - 11.0 ft: FILL, samp SILTY SAND, slightly mid fine to coarse sand, mo dry, reddish brown, est 30 -45% fines, contains weathered rock fragme	caceous, vist to imated				S-01, 24 in 0.0-2.0 ft	24 (100	1-2-5-3)) N=7					0.0 - 4 Flush Piezor install	Moun [.] neter	
3	676						S-02, 24 in 2.0-4.0 ft	24 (100								
4	675			SM		F2	S-03, 24 in 4.0-6.0 ft	24 (100	3-3-5-6)) N=8	-						
6	673									-						
7-1	672						S-04, 24 in 6.0-8.0 ft	22 (92		22			47			
8	671								24.2.2	-						
9	670						S-05, 24 in 8.0-10.0 ft	23 (96)								

	5	Schnabel Engineering LOG	Project: Client:		rrystone ylvania	Creek Watershed County	Dam 2	A	Borin	g Num	ber:		E	3-651
			Location	: Chat	tham, V	A				act Nu			2221	0031.100
Contra		Connelly & Associates		ate Star		01/11/2023		-	Gi	oundv	vater	Levels		
		reman: B. Mullendore		ate End		01/11/2023		Durin	g Drill	ing:				
Equip	-	r esentative: P. Alani Acker Rebel XL			-	m: VA State Plane Sout t Y: 3469250.8 ft		Comp	letion	:	01/1	1/23 0	3:38	32.3 ft
		/4" I.D. Hollow Stem Auger			Bearing:		•							
wieth	JU . 9 1			ole Elev	-	679.0 ft		After		-				
Hamn	ner Type	: Auto Hammer (140 lb)	Тс	tal Dep	oth:	48.1 ft	$($) Obsei	vation	Well:	03/0	04/23 0	2:45	34.0 ft
	N			TRATU	м	SAMPLE	ΠΛΤΛ							
DЕРТН (ft)	ELEVATION (ft)					JAIVII EL						<		
PT I	(ft EV	MATERIAL DESCRIPTION	uscs	BOI	UNIT		REC	BLOW	мс	LL	PI	#200	RE	MARKS
B	ELI		U SU	SYMBOL	5	in	. (%) C	OUNTS				(%)		
-				S										
	-													
	-				F2									
11	668 —	11.0 - 12.5 ft: FILL, sampled as						2-3-2-4						
		SILT WITH SAND, moist to dry,				10.0-12.0 ft (1	100)	N=5						
		gray, estimated 15 - 25% fine												
		grained sand, contains organics,	ML		F1									
12	667	low plasticity							1					
-														
	-	12.5 - 22.0 ft: FILL, sampled as												
13-	666 —	SILTY SAND, moderately				S-07, 24 in	24 2	2-2-3-6						
' =	- 000	micaceous, fine to coarse sand, moist, whiteish brown, estimated					100)	N=5						
	-	30 - 45% fines, contains					,							
-	-	weathered rock fragments												
14	665 —	-							-					
_	-													
	-													
15-	664 —					S-08, 24 in	24 2	2-2-3-4						
-	-					14.0-16.0 ft (1	.00)	N=5						
	-													
16	663 -								-					
	-		SM		F2									
	-													
17-	662						-	2-4-6-5 N=10						
-	-					16.0-18.0 ft (75)	N-10						
18-	661													
	661													
19-	660 —					S-10, 24 in	24 2	2-5-3-3						
	-						100)	N=8						
Botto	um of h	ooring at 48.1 ft. Boring termir	nated at	augei	r refus	al.	I		1	1	1			
1		installed upon completion.			0.0							S	heet	2 of 5

	1	Schnabel engineering	BOREHOLE LOG	Client: Locatior			County A				g Num act Nu		:		B-65
	actor:	Connelly & Associates eman: B. Mullendore		Di	ate Star ate Endo	ted:	01/11/2023 01/11/2023				round	vater	Levels		
		esentative: P. Alani					m: VA State Plane	South	Durin	-	-				
	ment:	Acker Rebel XL /4" I.D. Hollow Stem Aug	or		11210 unge, B		t Y: 3469250.		Comp			01/1	L1/23 0	3:38	32.3
ietho	Ja: J-1	4 1.D. Hollow Stelli Adg	ei	H	ole Elev	ation:	679.0 ft		After		-				
lamm	ner Type	: Auto Hammer (140 lb)	Тс	otal Dep	th:	48.1 ft		W Obser	vation	Well:	03/0	04/23 0	2:45	34.0
£	NOL			S	TRATU	M	SAMP	LE DAT					<		
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	PTION	uscs	SYMBOL	UNIT	DESCRIPTION	REC		мс	LL	PI	#200 (%)	REN	ARKS
				>	SYN	>		in. (%	5) COUNTS						
-	-														
	-														
21 –	658						S-11, 24 in	24	3-5-7-5						
-	-						20.0-22.0 ft	(100)) N=12						
-	-														
22	657	22.0 - 36.0 ft: FILL, sam													
	-	SANDY SILT, slightly mic moist, whiteish brown,													
23 —	050	30 - 45% fine to medium contains weathered roo	m sand,				5 12 24 in	24	2-2-4-5	31	43	14	66		
23 -	656	fragments, low plasticit					S-12, 24 in 22.0-24.0 ft			31	43	14	66		
-	-														
24 –	655 —														
-															
25	654					F2	S-13, 24 in	18	4-3-14-7						
-				ML			24.0-26.0 ft	(75)	N=17						
-															
26	653 —									-					
-															
								1.5							
27 -	652—						S-14, 24 in 26.0-28.0 ft	16 (66)	11-6-3-4 N=9						
-	-														
28-	651 —														
-															
29 –	650						S-15, 24 in	24	2-3-9-4						
-							28.0-30.0 ft	(100) N=12						
-	-														

	5	Schnabel	BOREHOLE	Client:	Ρ	ittsy	lvania	a Co	reek Watersh ounty				g Num				3-65
			100	Locatio					/ /			_	act Nu			2221	0031.10
Contra ontra		Connelly & Associates reman: B. Mullendore			ate S ate E				01/11/2023 01/11/2023	-	<u> </u>		ound	vater	Levels		
		resentative: P. Alani							VA State Plane	South		ng Drilli	ng:				
quipn	nent:	Acker Rebel XL					-		Y: 3469250.			oletion	:	01/1	1/23 (03:38	32.3 f
/letho	d: 3-1	/4" I.D. Hollow Stem Aug	er		-		aring				After	Drillin	g:				
lamm	er Tyne	: Auto Hammer (140 lb)		ole E otal I		tion:		679.0 ft 48.1 ft		(W) Obse	rvation	Well:	03/0)4/23 (02:45	34.0
		· Auto Hummer (140 ib	/					Τ									
DЕРТН (ft)	ELEVATION (ft)				STRA		1		SAMP			_			<		
EPT	EVAT (ft)	MATERIAL DESCRI	PTION	uscs	BOI		UNIT		DESCRIPTION	REC	-	МС	LL	PI	#200 (%)	RE	MARKS
¯	Ш			n I	SYMBOL		5		DESCRIPTION	in. (୨	%) COUNTS	5			(/0)		
_	-																
_	-																
-	-																
31-	648 –								S-16, 24 in	24							
	-								30.0-32.0 ft	(100)) N=7						
_	_																
32	647 —																
	-					_											
_	-			ML													
-	-																
33 –	646 —						F2		S-17, 24 in	24							
	-								32.0-34.0 ft	(100)) N=5						
-	-																
34	645 —					 @										34.0 f	ŧ۰
						$\ $			C 10 0 in							Samp	
_	_								S-18, 8 in 34.0-34.7 ft	8 (99) 3-50/2"					refusa	
-	-							1		(***	N=100					suspe cobbl	
35 –	644 —																c .
-	-																
-	-																
36 –	643 —					Ц						-					
=	-	36.0 - 38.0 ft: SILTY SAN micaceous, fine to coar															
-	-	moist, gray, estimated 3															
	-	fines, contains wood, a	lluvial														
37 –	642			SM			A2		S-19, 24 in 36.0-38.0 ft	24		61			41		
_	-								50.0-58.0 H	(100	N=30						
-	-																
38	641	38.0 - 44.0 ft: POORLY 0		_								-					
-	-	SAND WITH SILT, fine to							S-20, 4 in 38.0-38.3 ft	4 (99						38.0	0 - 43.0
-		sand, moist to wet, gra	y to						50.0-58.5 IL	(33	N=100						zometer een.
		reddish brown, estimat														Scre	cii.
39 –	640	fines, estimated 5 - 10% coarse gravel, contains					B2										<u>а</u> .
-		rock fragments, residua														39.0 Gro	0 ft: undwat
	-																ountere
						1		+								↓ I	
								1	1						1	1	

	5	Schnabel engineering	BOREHOLE LOG	Project: Client: Locatior	Pitts	ylvania	Со	eek Watersh unty			Boring Contra			<u> </u>		B-65
ontra	ctor:	Connelly & Associates			ate Star			1/11/2023			I			Levels	2221	0051.10
		eman: B. Mullendore			ate End			1/11/2023		Durin	g Drilli	ng:				
	bel Repr nent:	esentative: P. Alani Acker Rebel XL				-		VA State Plane 3469250.		Comp	letion		01/1	1/23 0	3:38	32.3 f
		/4" I.D. Hollow Stem Aug	er		unge, B			. 5405250.	on	After	Drillin	e:				
	_				ole Elev			79.0 ft			vation	-	03/0	04/23 0	2.45	34.01
lamm	er Type	: Auto Hammer (140 lb)		otal Dep		4	8.1 ft					03/0	,230 	2.45	54.01
£	NOL			S	TRATU	M		SAMP	LE DA	TA				<		
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	PTION	uscs	SYMBOL	UNIT	D	ESCRIPTION	REC in. (୨	BLOW	мс	LL	PI	#200 (%)	REM	MARKS
					<u>N</u>											
-																
41 -	638							S-21, 24 in	16	34-40-17						
'' <u>-</u>	000							40.0-42.0 ft	-	16						
-										N=57						
	-															
2-	637 —			SP-SM		B2) ft: Aug
-																nding/ aping.
-																
3-	636							S-22, 24 in	18	21-24-16	9			14		
=	-							42.0-44.0 ft	(75)) 11 N=40						
-	-															
14 –	635		DATED								-					
-	-	44.0 - 48.1 ft: DISINTEG ROCK, sampled as POO					V	C 22 40 in	10							
-	-	GRADED SAND WITH G	RAVEL,					S-23, 10 in 44.0-44.8 ft	10 (100							
15 –	634 —	fine to coarse sand, we whiteish brown, estimated			<u>M</u>					N=75						
	0.04	25% fine to coarse grav														
-																
-	-				R.											
6-	633			SP		C										
-	-															
-								S-24, 15 in 46.0-47.2 ft	10 (66)							
7-	632							40.0-47.2 IL	(00)	N=100						
-	-															
8-	631 —						x	6.25.4.	1	_	-					
-	-+							S-25, 1 in 48.0-48.1 ft	1 (83	1 30/1						
-	-															
19 – -	630															
=	-															
=	-															
\neg																
		oring at 48.1 ft. Bori			· · · · ·			•				•				

	1	Schnabel	AUGER PROBE	Project: Client:	Pitt	sylvania	Coun	k Watersh ^t y	ed D	am 2/	٩		g Num				651A
			LOG	Location								1	act Nu			2221	0031.100
Contra		Connelly & Associates			te Sta			16/2023				Gi	oundv	vater l	evels		
		reman: B. Mullendore			te End			16/2023		\square	Durin	g Drilli	ing:				
	-	resentative: P. Alani				-		VA State Plane					-	04.14	c /22.4	2.00	
	ment:	Acker Rebel XL						3469256.	4 ft		Comp	letion	:	01/1	.6/23 1	2:00	Dry
Metho	od: 3-1	/4" I.D. Hollow Stem Auge	er			Bearing:	Fvis	ting Grour	hd		After	Drillin	g:				
						vation:			iu	(\mathbf{W})			-				
Hamn	ner Type	: Auto Hammer (140 lb))	То	tal De	pth:	34.0	ace) ft			Obser	vation	well:				
-	z			, c	TRATU	м		SAMP		ΔΤΔ							
DEPTH (ft)	ELEVATION (ft)							34111				1			<		
	VATI (ft)	MATERIAL DESCRI	PTION	S	l 0	⊢ ⊢			RE	c F	BLOW	MC	LL	PI	#200	REN	/IARKS
DEI	ILE			uscs	SYMBOL	UNIT	DES	CRIPTION			DUNTS				(%)		
	_				Σ				(~,							
		0.0 - 34.0 ft: See Boring														0.0 - 3	
	678	Soil Material Descriptio	ns.														Probe
	0/0															with n	
																sampl	ing.
2-	677 -																
3-	676 -																
1 2 3 4 5 6 7 8 9	675																
5	674																
6	673																
	0/5																
7	070																
/ _	672																
8-	671																
	- III																
9-	670 -																
-	1																
10	669 –																
11-	668 -																
	668 667																
12-	667 -																
13	666																
14	665																
15	664																
16	663																
17	662																
	666																
18	661 -																
	660																
19-																	
	l due																
					I							-			S	heet :	l of 2

	5	Schnabel	AUGER PROBE	Project: Client:		rrystone sylvania	Creek Watersh County	ned D	am 2/	4	Borin	g Num	ber:		B-	651A
			LOG	Location	: Cha	tham, V	4				Contr	act Nu	mber		2221	0031.100
Contra		Connelly & Associates			te Sta		01/16/2023				Gi	ound	vater	Levels		
		reman: B. Mullendore			te Enc		01/16/2023		\square	Durin	g Drilli	ing:				
Equip	-	resentative: P. Alani Acker Rebel XL				-	 WA State Plane t Y: 3469256 			Comp	letion	:	01/1	16/23 1	2:00	Dry
		./4" I.D. Hollow Stem Aug	er			Bearing:							· ·	,		,
wieth	Ju. 🤉 1					vation:	Existing Grou	nd	_	After						
Hamn	ner Type	: Auto Hammer (140 lb))	То	tal De	pth:	Surface 34.0 ft		$($	Obsei	vation	Well:				
E	z			S	TRATU	м	SAMP	LE D	ATA							
DEPTH (ft)	ELEVATION (ft)		DTION					1						< 4	0.57	
EPT	EV/	MATERIAL DESCRI	PHON	uscs	lBO	UNIT	DESCRIPTION	RE		BLOW	МС		PI	#200 (%)	KEI	MARKS
	EL			Š	SYMBOL	5		in. (%) CO	DUNTS				(,,,,		
	111	0.0 - 34.0 ft: See Boring	B-651 for													
21	050	Soil Material Descriptio	ns.													
	658															
22	657															
23	656 -															
24	655															
	111															
25	654															
	in the															
26	653 –															
27-	652															
28	651															
29	650						UD-01, 24	18	8		19	44	9	50		
29	050						in 28.0-30.0 ft	(75	5)		19	44		50		
30	649						28.0-30.0 10									
_	_															
31-	648 -						UD-02, 24	3								
							in 30.0-32.0 ft	(12	2)							
32	648															
	in the															
	646															
	645															
34 -	645							 								
35	044															
36	643															
50	644 643 642 641 641															
37	642															
38-	641 -															
39	640 -															
	=			_	$\left \right $											
								1			I	I	I			
														S	heet	2 of 2

Image: Second secon		5	Schnabel	PROBE	Project: Client:	Pitt	sylvania	Со	reek Watersh unty	ed D	am 2A			g Num				651E
Bit Part Processing 1 Bit Marker Status Date Ender: 01/16/2023 During Defling: During Deflind: During Defling: During Defl			Connellu 8 Accesiotes	LOG					1/10/2022								2221	0031.10
makel Representative: P. Alani jament: Coordinate System: We water water water water Rebuild. Image from Weight of the Start System: Image from System: <th></th> <th>Durin</th> <th></th> <th></th> <th>vater</th> <th>Leveis</th> <th></th> <th></th>												Durin			vater	Leveis		
Important Print Print Description Important Impo	hna	bel Repi	resentative: P. Alani		C	oordina	ate Syste	em	VA State Plane				-	-	01/		0.22	Dimi
Base of the classion in the classic in the classi				ər								-			01/.	16/23 (J9:32	Dry
Auger Probability Implementation Impl	etno)a:)-T	74 I.D. Hollow Stelli Augo	- 1				E		nd				-				
B C MATERIAL DESCRIPTION S S S DESCRIPTION REC BLOW MC L P \$200 RMARKS 0.0<-18.0 ft: See Boring B-651 for Soil Material Descriptions. 0.0<-18.0 ft: See Boring B-651 for Soil Material Descriptions. I	amm	ner Type	: Auto Hammer (140 lb))	T(otal De	pth:	Ĭ	L8.0 ft		\mathbb{U}	Obser	vation	Well:		1	1	
0.0 - 18.0 ft: See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Market See Boring 8-651 for Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Market See Boring 8-651 fo	ŧ	NOI			9		М		SAMP	LE D/	ATA					<		
0.0 - 18.0 ft: See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Market See Boring 8-651 for Market See Boring 8-651 for Soil Material Descriptions. 0.0 - 18.0 ft: Auger Pole Market See Boring 8-651 for Market See Boring 8-651 fo	DEPTH (ft)	EVAT (ff)	MATERIAL DESCRI	ΡΤΙΟΝ	cs	BOL	Ш			RE	св	LOW	мс	LL	PI		REN	ARKS
0.0 - 18.0 ft Soil Material Descriptions. 0.0 - 18.0 ft Soil Material Descriptions. 676-1 676-1 676-1 676-1 Soil Material Descriptions. Image: Soil Material Descriptions. 677-1 676-1 676-1 676-1 Image: Soil Material Descriptions. Image: Soil Material Descriptions. Image: Soil Material Descriptions. Image: Soil Material Descriptions. 676-1 676-1 676-1 676-1 Image: Soil Material Descriptions. Image: Soil Material Descriptions. Image: Soil Material Descriptions. Image: Soil Material Descriptions. 677-1 676-1 676-1 676-1 Image: Soil Material Descriptions. Image: Soil Material Descriptions. Image: Soil Material Descriptions. Image: Soil Material Descriptions. 671-1 672-1 674-1 674-1 674-1 Image: Soil Material Descriptions. Image: Soil Material Descriptions. 660-1 672-1 674-1 674-1 674-1 Image: Soil Material Descriptions. Image: Soil Material Descriptions. Image: Soil Material Descriptions. Image: Soil Material Descriptions. 661-1 674-1 674-1 674-1 1mage: Soil Material Descriptions. Image: Soil Material Descriptions. Image: Soil Mat	ä	EL			ns	SYM	5		DESCRIPTION	in. (%) CC	DUNTS				(%)		
668 667 667 667 666 663 14.0-16.0 ft 14.0-16.0 ft 100-02, 24 23 16.0-18.0 ft 17 NP 45 661 661 661 661 661 661 661 661 660	lini.																	
668 667 667 666 667 666 666 666 666 666 666 666 666 666 666 666 666 666 663 663 664 100-01,24 20 (83) 14.0-16.0 ft 100-02,24 23 17 NP 45 661 661 661 661 661 661 661 17 NP 45 660 660 660 661 660 661 610 610 610 <td>1</td> <td>678 -</td> <td>Soil Material Descriptio</td> <td>ns.</td> <td></td>	1	678 -	Soil Material Descriptio	ns.														
668 667 667 667 666 663 14.0-16.0 ft 14.0-16.0 ft 100-02, 24 23 16.0-18.0 ft 17 NP 45 661 661 661 661 661 661 661 661 660	•																sampl	ing.
668 667 667 667 666 663 14.0-16.0 ft 14.0-16.0 ft 100-02, 24 23 16.0-18.0 ft 17 NP 45 661 661 661 661 661 661 661 661 16.0-18.0 ft 10	2	677																
668 667 667 667 666 663 14.0-16.0 ft 14.0-16.0 ft 100-02, 24 23 16.0-18.0 ft 17 NP 45 661 661 661 661 661 661 661 661 16.0-18.0 ft 10	3	676																
668 667 667 667 666 663 14.0-16.0 ft 14.0-16.0 ft 100-02, 24 23 16.0-18.0 ft 17 NP 45 661 661 661 661 661 661 661 661 16.0-18.0 ft 10	,																	
668 667 667 666 667 666 666 666 666 666 666 666 666 666 666 666 666 666 663 663 664 100-01,24 20 (83) 14.0-16.0 ft 100-02,24 23 17 NP 45 661 661 661 661 661 661 661 17 NP 45 660 660 660 661 660 661 610 610 610 <td>4</td> <td>6/5</td> <td></td>	4	6/5																
668 667 667 666 667 666 666 666 666 666 666 666 666 666 666 666 666 666 663 663 664 100-01,24 20 (83) 14.0-16.0 ft 100-02,24 23 17 NP 45 661 661 661 661 661 661 661 17 NP 45 660 660 660 661 660 661 610 610 610 <td>5</td> <td>674 -</td> <td></td>	5	674 -																
668 667 667 666 667 666 666 666 666 666 666 666 666 666 666 666 666 666 663 663 663 663 663 663 663 664 100-02, 24 23 16.0-18.0 tt 17 NP 45 661 661 661 661 661 661 661 661 661 661 661 661 661 661 661 661 661 661 661 10	•																	
668 667 667 666 667 666 666 666 666 666 666 666 666 666 666 666 666 666 663 663 664 100-01,24 20 (83) 14.0-16.0 ft 100-02,24 23 17 NP 45 661 661 661 661 661 661 661 17 NP 45 660 660 660 661 660 661 610 610 610 <td>6</td> <td>673</td> <td></td>	6	673																
668 667 667 667 666 663 14.0-16.0 ft 14.0-16.0 ft 100-02, 24 23 16.0-18.0 ft 17 NP 45 661 661 661 661 661 661 661 661 660	7-	672 -																
668 667 667 667 666 663 14.0-16.0 ft 14.0-16.0 ft 100-02, 24 23 16.0-18.0 ft 17 NP 45 661 661 661 661 661 661 661 661 16.0-18.0 ft 10	, IIIII																	
668 667 667 667 666 663 663 14.0-16.0 ft 14.0-16.0 ft 100-02, 24 23 16.0-18.0 ft 17 NP 45 45 661 661 661 661 661 661 661 16 17 NP 45 660	8	6/1-																
668 667 667 667 666 663 663 14.0-16.0 ft 14.0-16.0 ft 100-02, 24 23 16.0-18.0 ft 17 NP 45 45 661 661 661 661 661 661 661 16 17 NP 45 660	9	670																
668 667 667 667 666 663 663 14.0-16.0 ft 14.0-16.0 ft 100-02, 24 23 16.0-18.0 ft 17 NP 45 45 661 661 661 661 661 661 661 16 17 NP 45 660	10	660																
668 667 667 667 666 663 14.0-16.0 ft 14.0-16.0 ft 100-02, 24 23 16.0-18.0 ft 17 NP 45 661 661 661 661 661 661 661 661 16.0-18.0 ft 10		009																
	11-	668																
	12	667																
	13	666																
	14	665																
									UD-01. 24	_								
	15	664 –																
	16-	663							14.0-16.0 ft									
	uului								UD-02, 24		,							
	17-	662											17		NP	45		
	18 –	661							10.0-18.0 π									
	TITI	Intra																
	19-	660																
Sheet 1 of 1								-										
Sheet 1 of 1																	<u> </u>	
																S	heet	1 of 1

	Schnabel	BOREHOLE	Project: Client:	Pittsy	Ivania	Creek Watersh County				g Num				8-652
ontractor	: Connelly & Associate		Location	: Chatl ate Star		A 01/23/2023				act Nu oundv			22210	0031.10
ontractor chnabel R quipment ethod:	Foreman: C. Gudiel Representative: A. Sper C. Diedrich D-70 (Track) 4-1/4" I.D. Hollow Stem A NQ Double Barrel	ncer uger	Da Co X: Pl Ho	ate Ende oordinat 11210 unge, Bo ole Eleva	ed: ce Syste 183.1 f earing: ation:	01/24/2023 m: VA State Plane t Y: 3469270 645.4 ft	.9 ft -	During Comp After W Obser	g Drilli letion Drillin	ng: : g:		23/23 0	4:25	7.0 ft
immer T	ype: Auto Hammer (140	lb)	To	tal Dep	th:	62.6 ft		Ubser	vation	wen:				
DEPTH (ft) ELEVATION	王 MATERIAL DESC	RIPTION	nscs			SAMP	REC	A BLOW COUNTS	мс	u	PI	< #200 (%)	REN	/IARKS
645 1	SAND WITH GRAVEL, micaceous, fine grain moist, orangeish brov estimated 15 - 25% fi gravel 2.3 - 6.0 ft: FILL, sam POORLY GRADED SAN moderately micaceou coarse sand, moist, g estimated 5 - 10% fin rock fragments	moderately ned sand, wn to brown, ines, ine to coarse pled as ND WITH SILT, us, fine to ray to white,	SM SP-SM		F2	S-01, 24 in 0.0-2.0 ft S-02, 24 in 2.0-4.0 ft S-03, 24 in 4.0-6.0 ft	22 (92) 20 (84) 24 (100)	3-3-10 10 N=13 14-19-15 10 N=34 5-7-6 12 N=13						
6 - 639 7 - 638 8 - 637 9 - 636	moist to wet, orangis gray, estimated 15 - 2 estimated <5% fine g	barse sand, sh brown to 25% fines,	SM		A2	S-04, 24 in 6.0-8.0 ft S-05, 24 in 8.0-10.0 ft	16 (66) 24 (100)	5-3-3-3 N=6	27			17		

	5	Schnabel Engineering	BOREHOLE LOG	Project: Client: Locatior	Pitts	ylvania	Со	reek Watersh unty	-				g Num act Nu		:		B-65 2
	ctor For	Connelly & Associates eman: C. Gudiel resentative: A. Spence	er	D D	ate Star ate End	ted: ed:	0	01/23/2023 01/24/2023 VA State Plane	South		ouring	Gr g Drilli	oundv ng:		Levels 23/23 0	4:25	7.0 ft
luipn etho	nent: d: 4-1 NQ	Diedrich D-70 (Track) /4" I.D. Hollow Stem Aug Double Barrel : Auto Hammer (140 lb	er	X Pi H		0183.1 f earing: ration:	t 1 6	:: 3469270. 545.4 ft 52.6 ft			fter I	letion: Drillinរូ vation	g:				
					STRATU	м		SAMP	LE DA	ITA					<		
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	PTION	uscs	SYMBOL	UNIT	0	DESCRIPTION	REC in. (9	C BLC %) COU	OW INTS	МС	LL	PI	#200 (%)	REN	MARKS
	635						I										
1	634 -					A2		S-06, 24 in 10.0-12.0 ft	24 (100		-3-9 =4						
2	633	12.0 - 14.0 ft: POORLY (GRAVEL WITH SILT, fine gravel, subangular to su	- coarse		00000000000000000000000000000000000000												
3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	632	particles; moist, orange to gray, estimated 5 - 10 residual	eish brown	GP-GN				S-07, 24 in 12.0-14.0 ft	20 (84) 2	6-14 2 30						
4	631	14.0 - 17.6 ft: POORLY (SAND WITH SILT, mode micaceous, fine to coar moist to wet, brown, es	rately se sand,					S-08, 5 in 14.0-14.4 ft	5 (100		/5" 60						
5	630	- 10% fines, residual		SP-SN	1												
6	629					B2											
7	628	17.6 - 22.0 ft: SILTY SAN	ID, highly			Z		S-09, 24 in 16.0-18.0 ft	14 (58		5-16 .6 31						
8	627	micaceous, fine to coar moist, orangeish browr estimated 15 - 25% fine estimated <5% fine grav residual	rse sand, n, es,	SM													
9	626							S-10, 24 in 18.0-20.0 ft	24 (100			25			20		
Botto	m of b	oring at 62.6 ft. Bori	ng termir	nated at	t select	ted de	pt	h.							CL	neet 2	

	5	Schnabel engineering	BOREHOLE LOG	Project: Client: Locatior	Pittsy	/lvania	Со	reek Watersh unty			Borin	g Num act Nu				B-65 2
ontra	actor:	Connelly & Associates			ate Star			01/23/2023			-	roundv			22210	0031.10
chna quipi Ietho	bel Repr ment: od: 4-1 NQ	eman: C. Gudiel esentative: A. Spence Diedrich D-70 (Track) /4" I.D. Hollow Stem Aug Double Barrel : Auto Hammer (140 lb	er	Ca X: Pl H		e Syste 183.1 f earing: ation:	em: ft 1	01/24/2023 VA State Plane f: 3469270. 545.4 ft 52.6 ft		Com	ng Drilli pletion Drillin rvation	: g:	01/2	23/23 0	4:25	7.0 ft
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	-	2	STRATUN	N		SAMP	LE DA		мс	L	PI	< #200	REN	MARKS
DEP	ELEV			uscs	SYMBOL	UNIT		DESCRIPTION		%) COUNTS	5			(%)		
21	625					В2		S-11, 24 in 20.0-22.0 ft	20 (84							
2	623	22.0 - 37.6 ft: DISINTEG ROCK, sampled as SILTY highly micaceous, fine t sand, moist, orangeish mottled gray, estimated fines	' SAND, to coarse brown to					S-12, 4 in 22.0-22.3 ft	4 (100) 50/4")) N=100						
24	622	lines					X	S-13, 4 in 24.0-24.3 ft	4 (100	50/4")) N=100	_					
6	620			SM		С	X	S-14, 4 in 26.0-26.3 ft	4 (100)						
	618															
28	617				REGREECE		X	S-15, 5 in 28.0-28.4 ft	5 (100) 50/5")) N=100						
	616															

	5	Schnabel engineering	BOREHOLE LOG	Project: Client: Location		/lvania	Со	eek Watersh unty				g Num act Nu		•		B-65 2
ontra	actor:	Connelly & Associates			ate Star)1/23/2023				oundv			22210	051.10
		eman: C. Gudiel			ate Ende)1/24/2023	~					23/23 04	4:25	7.0 ft
	-	esentative: A. Spence	er					VA State Plane			-	-	01/2		1.25	7.0 1
	ment:	Diedrich D-70 (Track)						: 3469270.	510	Comp						
letho		/4" I.D. Hollow Stem Aug Double Barrel	er		lunge, B ole Elev	•		545.4 ft		After I	Drillin	g:				
amm		: Auto Hammer (140 lb)		otal Dep			52.6 ft		W Observ	vation	Well:				
			,		STRATU			SAMP		Δ						
DEPTH (ft)	ELEVATION (ft)		DTION					0, 111			MC		Ы	< #200	DEA	
EPT	€Va (f	MATERIAL DESCRI	PHON	uscs	SYMBOL	UNIT		DESCRIPTION	REC	BLOW	МС	LL	PI	#200 (%)	KEN	ARKS
				j S	SYN	5			in. (%)	COUNTS						
-	-				Ŋ		Y	S-16, 5 in	5	50/5"						
	615							30.0-30.4 ft	(100)	N=100						
-	-															
31 —	_															
-	614				RA.											
-	-															
32-	-				1			S-17, 4 in	4	50/4"						
-	613 -							32.0-32.3 ft								
-	-				M				()							
	-															
33 –	-															
-	612 -				×4											
-	-					с										
34 –	-				Š.		×									
-	-							5-18, 1 10	1 (100)	50/1" N=100						
-	611				M			34.0-34.1 ft	(100)	N-100						
-	-															
35 –	-															
-	610 -				×4											
	-															
36 —	-				ý,											
- 00	-						X	S-19, 2 in	2	50/2"						
	609							36.0-36.2 ft	(100)	N=100						
	-															
37 –	-															
-	608				RA .			S-20, 1 in	1	50/1"						
							×	37.5-37.6 ft	(100)	N=100		L			_	
	-	37.6 - 39.6 ft: SCHIST, st intensely fractured (<2.												37.6 ft: ⁻ NW casi		
38 –		fractured (2.5 - 8 in), lig		•										ock.	115 JEd	
-	607 –	gray, strongly foliated, g	garnet, mus	covite,				CORE	18	0					Eoliati	n icir
-		biotite, fine to coarse g	rained, spe	ckles of		D1	$\ $	C-01, 18 in	(100)) (0)				38.5 ft: H 10°, smc		
39 —		red minerals					$\ $	37.6-39.1 ft						reshly w		
							h				1			38.9 ft: F		
-	606 —													20°, pari		
-	-	39.6 - 40.1 ft: GNEISS, v	very strong,	fresh,		D2	1							100%), il taining,		
		light gray					+		REC(%	5) RQD(%)	DRULP		·	olanar	Sirgint	., .ouy
								1					·• ['			

	5	Schnabel	BOREHOLE LOG	Project Client:	Pitts	ylvania	Cou	eek Watersh inty			Boring				8-65
					on: Chat			1/22/2022			Contra				0031.1
ontra		Connelly & Associates reman: C. Gudiel			Date Star Date End			1/23/2023 1/24/2023						Levels	7.0.0
		resentative: A. Spen	cer		Coordina				South		g Drillir	ig:	01/	23/23 04:25	7.0 f
quipn	nent:	Diedrich D-70 (Track)				-		3469270.9	9 ft 🛛	Comp	letion:				
letho		/4" I.D. Hollow Stem Au	ger		Plunge, B	•		6	Z	🖊 After	Drilling	:			
		Double Barrel : Auto Hammer (140	b)		Hole Elev Total Dep			45.4 ft 2.6 ft	(V	V) Obser	vation	Well:			
		· Adto Hammer (1401	57				02	2.011							
DEPTH (ft)	ELEVATION (ft)	MATERIAL D	ESCRIPTION						REC	RQD	tate	PACK	ER	REMAR DISCONTIN	
DE	ELE				SYMBOL	UNIT	DE	ESCRIPTION	in. (%)		DRILL RATE (min/ft)	Lugeons			
	605	40.1 - 41.0 ft: SCHIST, strong, fresh, intensel to highly fractured (2.	y fractured (<2.5 in)		D1								39.2 ft: Foliatio 0°, partial (50 iron-oxide staii	- 100% ning,
1-		to dark gray, strongly muscovite, biotite, fin	foliated, garr e to coarse g	net, grained										slightly rough, 39.7 ft: Joint, 4 spotty (<50%),	40°,
	604	41.0 - 62.6 ft: GNEISS, strong, slightly weath moderately fractured	ered to fresh	Ι,				CORE	60	52				minerals infillin slightly rough,	ng, plana
2-	602	slightly fractured (2 - gray, poorly to moder	6.5 ft), white ately foliated	to dark I,				C-02, 60 in 39.1-44.1 ft	(100)	(87)				41.4 ft: Joint, 3 spotty (<50%), oxide staining,	iron-
	603	feldspar, quartz, biotit garnet,, medium to co												curved	0.,,00
3-	602														
4	601											_			
5															
	600														
6-0															
	599							CORE	58	44					
7-								C-03, 60 in 44.1-49.1 ft	(96)	(73)				46.7 ft: Joint, 3 spotty (<50%), oxide staining,	iron-
	598											21		undulating 46.9 ft: Joint, 3	30°,
8														spotty (<50%), oxide staining, planar	
	597 —													, 47.3 ft: Joint, 3 partial (50 - 10	0%),
9														iron-oxide staiı rough, planar 48 E ft: Joint E	
	596													48.5 ft: Joint, 5 (<50%), iron-o: staining, rougł	xide
	_				the states	1	i 11			1	1	1		- 5	

	5	Schnabel	BOREHOLE LOG	Project: Client:	Pittsy	Ivania	Со	eek Watersh unty			L	Boring				3-65
		en gineeking		Location							(Contra				0031.1
ontra		Connelly & Associates eman: C. Gudiel			ate Star ate Ende			1/23/2023 1/24/2023	ŀ				- 1		r Levels	
		eman: C. Gudier resentative: A. Spen	cer					VA State Plane	South		uring	Drillin	g:	01	/23/23 04:25	7.0 f
quipn	-	Diedrich D-70 (Track)				-		3469270 .			ompl	etion:				
/letho		/4" I.D. Hollow Stem Au	Iger		unge, B	-					fter D	Drilling	: [
		Double Barrel	b)		ole Eleva			645.4 ft		$(\mathbf{W})_{0}$	bserv	vation \	Nell:			
iamm		: Auto Hammer (140	0)		tal Dep		6	52.6 ft								
£	ELEVATION (ft)				STRA	тим			SA	MPLE D	ATA				REMAR	VC
DEPTH (ft)	₹ E	MATERIAL D	ESCRIPTION		30L	F			RE	C F	RQD	RATE /ft)	PAC	(ER	DISCONTIN	
B	E				SYMBOL	UNIT	D	ESCRIPTION	in. (. (%)	DRILL RATE (min/ft)	Lugeon	s		
_	_				S									╁	49.4 ft: Joint, 1	30°.
-	595 —														spotty (<50%),	
	-														oxide staining,	
51	-														rough, planar 50.8 ft: Joint, 1	
' -	-														partial (50 - 10	
-	594							COD5			F 4				iron-oxide stai	ining,
-	-							CORE C-04, 60 in	60 (10		54 (90)				slightly rough,	planai
52-	-							49.1-54.1 ft		- /						
-	593 —															
-														╟╋	-	
53-	_															
	-															
_	592															
-	_															
54 –	-						L									
	591 —															
55	_					D2										
	-					DZ										
_	590															
-	-															
56-	_														55.9 ft: Joint, 3	30°
	589 —															
-								CORE	60		60					
57								C-05, 60 in	(10	0) (1	100)				57.0 ft: Foliati	on ioin
<i>'</i>								54.1-59.1 ft							57.0 Jt. Foliati	on juin
-	588												2			
-	_												3			
58-	-															
	587 -															
	-															
59 –																
													1			
-	586															
-	_														59.8 ft: Vein jo	oint, 0°,
														+1		. ,
					- I - I	1										

	5	Schnabel	BOREHOLE	Project Client:	Pitts	ylvania	Со	reek Watersh unty		-	Boring				3-65
					on: Chat						Contra				0031.10
ontra		Connelly & Associates			Date Star Date Ende			01/23/2023	-]				r Levels	_
		eman: C. Gudiel esentative: A. Spen	cer					01/24/2023 VA State Plane :	South	─ Durin	g Drillir	ng:	01	/23/23 04:25	7.0 fl
quipn	-	Diedrich D-70 (Track)						/: 3469270.		Comp	letion:				
/letho		/4" I.D. Hollow Stem Au	iger		Plunge, B	-				After	Drilling	: [
		Double Barrel	11- 1		Hole Elev			545.4 ft		(W) Obser	vation	Well:			
amm		: Auto Hammer (140	D)		Total Dep			52.6 ft		\bigcirc					
£	ELEVATION (ft)				STRA	тим			SAN	/IPLE DATA				DEMAD	WC .
DEPTH (ft)	(ft)	MATERIAL D	ESCRIPTION		30L	Ц			REC	RQD	RATE (ft)	PAC	KER	REMAR DISCONTIN	
B	ELE				SYMBOL	UNIT	C	DESCRIPTION	in. (୨		DRILL RATE (min/ft)	Lugeon	s		
	-				S.									partial (50 - 10	20%)
-	585													iron-oxide stai	
-	-													rough, planar,	
61	-							CORE	42					weathered, <1 quartz vein	./4" thi
	-							C-06, 42 in 59.1-62.6 ft	(100	0) (81)				60.4 - 60.9 ft:	Joint,
-	584							59.1-02.0 Π						70°, broken du	
-	_													drilling	
62	-				19										
-	583														
-	-														
	-														
63	-														
-	582														
-	-														
64 –	-														
-	581 —														
-	-														
=	_														
65	-														
_	580														
-	-														
66 –	-														
=	579														
	-														
_ =	-														
67	-														
_	578														
-															
68 –															
Ę	577														
	-														
69															
E	576														
-	-														
						_						-			
1															

	5	Schnabel Engineering	BOREHOLE	Project: Client:	Pitts	ylvania				Boring					3-75
				Location						Contra				22210	0031.10
ontra chnal quipr	bel Repr nent:	Connelly & Associates eman: B. Mullendore resentative: P. Alani Acker Rebel XL /4" I.D. Hollow Stem Aug	er	Da Ca X: Pl	1120	led: Ite Syste 9930.4 f Bearing:	01/09/2023 01/10/2023 m: VA State Plane t Y: 3469250. 677.4 ft	South 6 ft	During	g Drilli letion:	ng: :		Levels)8:21	4.3 f
amm	er Type	: Auto Hammer (140 lb)		otal Dep		34.1 ft	(W Obser	vation	Well:				
				T	TRATU			LE DAT	Ā				<		
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	PTION	uscs	SYMBOL	UNIT	DESCRIPTION	REC in. (%		МС	LL	PI	#200 (%)	REN	ARKS
1	677	0.0 - 0.3 ft: Topsoil 0.3 - 22.0 ft: FILL, samp SILTY SAND, fine to coa moist, gray, estimated 3 fines, estimated 5 - 109 gravel, contains organic odor	rse sand, 30 - 45% 6 fine				S-01, 24 in 0.0-2.0 ft	16 (66)	0-1-1-1 N=2						
3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	675						S-02, 24 in 2.0-4.0 ft	22 (92)	1-2-2-4 N=4						
4 5	673					F2	S-03, 24 in 4.0-6.0 ft	22 (92)	3-3-3-3 N=6	19			31		
7	671						UD-01, 24 in 6.0-8.0 ft	12 (50)						6.0 ft: Groun encou	dwate
9	669	8.0 - 9.0 ft: rock fragments					S-04, 24 in 8.0-10.0 ft	22 (92)	3-3-3-4 N=6						

	5	Schnabel Engineering	BOREHOLE	Project: Client:	Pitts	ylvania					g Num				8-75
ontra	ctor:	Connelly & Associates		Location D	n: Chat ate Star		01/09/2023				act Nu oundv			2221(0031.1
		eman: B. Mullendore			ate Ende		01/10/2023	~	Durin						
	-	esentative: P. Alani				-	WA State Plane		Comp	-	-	01/1	LO/23 0	Q·71	4.3 f
	nent:	Acker Rebel XL /4" I.D. Hollow Stem Aug	or		: 11209 I unge, B		Y: 3469250.		-				10/23 0	0.21	4.51
ietho	a: 5-1/	4 I.D. Hollow Stelli Aug	CI		ole Elev	-	677.4 ft		After		-				
amm	er Type	: Auto Hammer (140 lb)	т	otal Dep	th:	34.1 ft	(W Obser	vation	Well:				
£	z			9	TRATU	vi 🛛	SAMP	LE DAT/	4				<		
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	PTION		Ы					мс	ш	Ы	#200	REN	ARKS
DEP	ELEV			uscs	SYMBOL	UNIT	DESCRIPTION	REC in. (%)	BLOW COUNTS				(%)		
						-									
-	667 —														
-	-														
1-	-						S-05, 24 in	18	2-3-3-2 N=6						
Ξ	666 -						10.0-12.0 ft	(75)							
	_														
2-	-														
-															
-	665 — 														
3-	-						UD-02, 24	24		13		NP	31		
	-						in	(100)		15					
-	664 —						12.0-14.0 ft								
_	-														
4	-														
-	663														
-	=														
5-	_			SM		F2	S-06, 24 in	24	4-5-5-9						
-	662 -						14.0-16.0 ft	(100)	N=10						
-	002														
6	_														
	-														
-	661														
, 1	-														
7-	-						S-07, 24 in 16.0-18.0 ft	24 (100)	4-5-5-8 N=10						
1	660 -							(100)							
=	-														
8-															
	659 —														
	-														
9-	-						S-08, 24 in	11	5-4-5-5						
- I							18.0-20.0 ft		N=9						
	658														
=	-														
				- 1		-			+			I			

	5	Schnabel engineering	BOREHOLE	Project: Client: Locatior	Pittsy	/Ivania				Boring Contra			:		8-75
ontra chna quipi	bel Repr ment:	Connelly & Associates eman: B. Mullendore resentative: P. Alani Acker Rebel XL /4" I.D. Hollow Stem Aug		Di Di Co X: Pl	ate Star ate Ende oordinat 11209 unge, Be	ted: ed: te Syste 1930.4 fi earing:	01/09/2023 01/10/2023 m: VA State Plane Y: 3469250.	6 ft -	Durin Comp	Gr g Drilli letion:	oundv ng:	vater			4.3 fi
amn	ner Type	: Auto Hammer (140 lb)		ole Eleva otal Dep		677.4 ft 34.1 ft		(W) Obser		-				
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRI	PTION	e NSCS	TRATUN	UNIT	SAMP	REC	A BLOW COUNTS	MC	ш	PI	< #200 (%)	REN	/IARKS
21	657				5	F2	S-09, 24 in 20.0-22.0 ft	18 (75)	3-2-2-3 N=4						
22	655	22.0 - 30.0 ft: FILL, sam SANDY SILT, moist to we estimated 15 - 25% fine grained sand, estimated fine to coarse gravel, co weathered rock fragme plasticity	et, brown, e to coarse d 5 - 10% ontains				S-10, 24 in 22.0-24.0 ft	18 (75)	3-2-3-2 N=5						
24	653						S-11, 24 in 24.0-26.0 ft	24 (100)	2-2-3-5 N=5	25			64		
26	651	26.0 ft: 15-25% fine to coar	rse gravel	ML		F1	S-12, 24 in 26.0-28.0 ft	12 (50)	3-10-13 10 N=23						
28	649						S-13, 24 in 28.0-30.0 ft	24 (100)	5-6-8-9 N=14						

	5	Schnabel	BOREHOLE LOG	Project: Client:	Pitt	sylvania	Со	eek Watersh unty			Borin	-				3-75
			100	Location							Contra				2221	0031.1
Contra		Connelly & Associates eman: B. Mullendore			ate Sta ate Eno)1/09/2023)1/10/2023	-			oundv	vater l	Levels		
		resentative: P. Alani						VA State Plane	South		g Drilli	ng:				
quipr	nent:	Acker Rebel XL				-		/: 3469250.		Comp	letion	:	01/1	.0/23 0	8:21	4.3 f
Netho	d: 3-1	/4" I.D. Hollow Stem Aug	er			Bearing				After I	Drillin	g:				
lamm	er Type	: Auto Hammer (140 lb)		ole Ele otal De	vation: pth:		577.4 ft 34.1 ft		(W) Observ	vation	Well:				
			/	1	TRATU			SAMP		та						
DEPTH (ft)	ELEVATION (ft)		DTION					JAIVIE						<		
EPT	EVAT (ft)	MATERIAL DESCRI	PTION	uscs	SYMBOL	UNIT	D	DESCRIPTION	REC		МС	LL	PI	#200 (%)	KEN	ARKS
Δ	E			Š	SYN	5			in. (୨	%) COUNTS						
11	111	30.0 - 33.0 ft: FILL, sam														
-	647 –	SILTY SAND, moist to w estimated 30 - 45% fine														
=	-	nonplastic to low plasti														
31 –	-							S-14, 24 in	24		20		NP	42		
	646 —							30.0-32.0 ft	(100)) N=6						
-	0+0			SM		F2										
32	-															
	-															
-	645															
-	-								22	3-7-11						
33-	-	33.0 - 34.1 ft: SILTY GRA	AVEL WITH					S-15, 24 in 32.0-34.0 ft	(100							
=	644	SAND, slightly micaceo						32.0-34.0 IL		N=18						
-	-	coarse grained gravel, a subangular particles; m		GM		B2										
34 –	-	reddish gray, estimated														
-	1	fines, estimated 15 - 25						S-16, 1 in 34.0-34.1 ft	1 (100	30/1						
-	643	coarse grained sand, re	sidual]				34.0-34.1 IL	(100) N=100						
~ ⁻	-															
35-	-															
=	642 -															
=	-															
36 –	-															
-	641															
-																
37 –																
-	-															
-	640 —															
<u> </u>	-															
38	-															
-	639															
-	-															
39 –	-															
-																
_	638															
-	-															

BOREHOLE BACKFILL RECORDS

Project: Cherrystone Creek Watershed Dam 2A	Boring ID:	B-51
Location: Chatham, VA	Date: 1/18/2023	
Schnabel Project No: 22210031.100	By: ARS	Date: 1/23/2023
Client Name: Pittsylvania County	Checked: PWA	Date: <u>3/28/2023</u>

	Drilling and Bo	orehol	e Vo	lume Informatio	n		
Method(s) of Drilling:	4-1/4" HSA & NQ2 Cor	e	Dian	neter of Borehole	(inches) (A	\) :	8.25" & 3"
Completion Date of Drilling:	1/23/2023		Tota	I Depth of Boreho	ole After Dr	illing (ft):	97.6
Depth of Borehole at Start of	Backfilling (ft) (B):	97.6	Dep	th of Water at Sta	art of Backf	illing (ft):	45.4
Calculated Volume of Boreho	ole [0.041 * A ² * B] =	212	2.2	gal * 0.134 =	28.4	feet ³	

Backfill Record for Solid Materials								
Method:	A	Iternating Layers		Single Material Type				
Туре:	Size:	# of	Bag Wt (lb):	Total Vol Placed (ft ³):				
		Bags:	Bag Vol (ft ³):	Est Thickness / Layer (ft):				
Туре:	Size:	# of	Bag Wt (lb):	Total Vol Placed (ft ³):				
		Bags:	Bag Vol (ft ³):	Est Thickness / Layer (ft):				

	Backfill Red	cord for Liqu	id Materials (Gi	rout)	
Grout Mix	Portland Cement (# of bags):	1	Weight of bag (b): 94	Water (gal): 30
Components (per batch):	Bentonite (lb): 25		Grout Mixing Me	ethod: Moyno	Pump & Shovel
	vith tremie method?	/ No			
		Placement \	/olumes		
Grouting	Date/Time	Start Depth (feet)	Tremie Depth (feet)	Calculated Volume to b Placed (gal	e Estimated Volume Placed (gal)
Initial Filling	1-23-2023 / 12:30-2:00 PM	97.6	97.5	212.2	180
Top Off #1	1-27-2023 / 11:30 AM	30			85
Top Off #2	2-7-2023 / 1:00 PM				20
Top Off #3					
Top Off #4					
		Total E	stimated Volum	e Placed (gal):	285
Was a stake plac	ed and labeled to indicate boring	g location and	ID after backfill	was completed	d? Yes No
Comments:					

PIEZOMETER BACKFILL FIELD FORM

Project: Cherrystone Creek Watershed Dam 2A	Boring ID:	B-51A
Location: Chatham, VA	Date: 1/16/2023	
Schnabel Project No: 22210031.100	By: ECU	Date: <u>1/18/2023</u>
Client Name: Pittsylvania County	Checked: PWA	Date: <u>3/28/2023</u>

Drilling and Borehole Volume Information								
Method(s) of Drilling: 4-1/4" Hollow Stem Augers	Diameter of Borehole (inches) (A): 8.3							
Completion Date of Drilling: 1/16/2023	OD Diameter of Piezometer Pipe (inches) (B): 2.3							
Depth of Borehole at Start of Backfilling (ft): 63.2	Depth of Water at Start of Backfilling (ft): 60.2							
Calculated Per Foot Volume of Borehole [0.041 * A ²] =	2.8 gal * 0.134 · 0.38 feet ³							
Calculated Per Foot Volume of Piezometer Pipe [0.041 * B] = 0.2 gal * 0.134 · 0.03 feet ³							
Calculated Per Foot Volume of Borehole with Installed Pipe	= 2.6 gal * 0.134 : 0.35 feet ³							

Solid Components (per container)						
Material Type and Brand Weight (lb) Volume (gal)						
3/8" - 1/4" Bentonite Chips, Enviroplug Medium	50	5.3				
Gravel Sand	50	3.7				
Concrete, Quikrete	60	3.8				

Grout Mix Components (per batch)						
Grout Mix	Portland Cement (# of bags): 1	Weight of bag (lb): 94 Water (gal): 30				
	Bentonite (lb): 25	Grout Mixing Method: Circulate through Moyno pump				
Volume of mixed	components (gal): 180					
Grout backfilled w	Grout backfilled with tremie method? YES					

Placement Volumes								
Backfill Material	Date/Time	Backfi ll Bottom (fee	/ Тор	Tremie Depth (feet)	Interval Height (feet)	Calculated Volume (gallons)	Estimated Vol Placed (gallons)	Ratio of Placed/Calc Vols
Well Gravel Pack	01-16-23 / 3:00 PM	63.2	51.8	-	11.4	29.6	31.5	1.1
Bentonite Chips	01-16-23 / 3:00 PM	52.0	50.0	-	2.0	5.2	5.3	1.0
Grout	01-17-23 / 12:30 PM	50.0	10.0	49.0	40.0	104.0	105.0	1.0
Grout	01-18-23 / 09:10 AM	28.0			28.0	72.8	35.0	
Grout	01-27-23 / 11:30 AM						25.0	
Grout	02-07-23 / 1:00 PM						15.0	1.0
Concrete								
	Totals:							1.0

Comments:

* = below bottom of piezometer

1) Bottom depth of backfill is measured prior to backfilling, with top depth measured after backfilling. If grout settles then

the bottom depth of the next backfill layer may be deeper than the top measured depth of the previous grout backfill.

2) See Piezometer Installation Sketch for details.

PIEZOMETER BACKFILL FIELD FORM

Project: Cherrystone Creek Watershed Dam 2A	Boring ID:	B-651	
Location: Chatham, VA	Date: 1/11/2023		
Schnabel Project No: 22210031.100	By: PWA	Date: 1/11/2023	
Client Name: Pittsylvania County	Checked: ECU	Date: 3/29/2023	

Drilling and Borehole Volume Information						
Method(s) of Drilling: 3-1/4	I" Hollow Stem Augers	Diameter of Boreh	ole (inches) (A):	7	7.3	
Completion Date of Drilling:	1/16/2023	OD Diameter of P	iezometer Pipe (ind	ches) (B):	2.3	
Depth of Borehole at Start of Ba	ackfilling (ft): 48.1	Depth of Water at	Start of Backfilling	(ft):	32.3	
Calculated Per Foot Volume of	Borehole [0.041 * A ²] =	2.2	gal * 0.134 :	0.38	feet ³	
Calculated Per Foot Volume of	Piezometer Pipe [0.041 * E	^{3²] = 0.2}	gal * 0.134 :	0.03	feet ³	
Calculated Per Foot Volume of	Borehole with Installed Pip	e = 2.0	gal * 0.134 ·	0.35	feet ³	

Solid Components (per container)						
Material Type and Brand Weight (lb) Volume (gal)						
3/8" - 1/4" Bentonite Chips, Enviroplug Medium	50	14.3				
Gravel Sand	50	3.7				
Concrete, Quikrete	60	3.8				

Grout Mix Components (per batch)						
Grout Mix	Portland Cement (# of bags): 1	Weight of bag (lb): 94	Water (gal): 30			
Bentonite (lb): 25		Grout Mixing Method: Circulate through Moyno pur				
Volume of mixed	components (gal): 105					
Grout backfilled w	Grout backfilled with tremie method? <u>YES</u>					

Placement Volumes								
		Backfil	Depth	Tremie	Interval	Calculated	Estimated	Ratio of
Backfill Material	Date/Time	Bottom	/ Тор	Depth	Height	Volume	Vol Placed	Placed/Calc
		(fee	et)	(feet)	(feet)	(gallons)	(gallons)	Vols
Bentonite Chips	01-16-23 / 2:00 PM	48.1	44.0	-	4.1	8.2	9.0	1.1
Well Gravel Pack	01-16-23 / 3:00 PM	44.0	37.0	-	7.0	14.0	31.5	2.2
Bentonite Chips	01-16-23 / 3:00 PM	37.0	35.0	-	2.0	4.0	14.3	3.6
Grout	01-17-23 / 12:30 PM	35.0	5.0	-	30.0	60.0	75.0	1.3
Grout	01-18-23 / 09:10 AM	30.0			30.0	60.0	30.0	0.5
Concrete								
	Totals: 138.0 150.8 1.1							

Comments:

* = below bottom of piezometer

1) Bottom depth of backfill is measured prior to backfilling, with top depth measured after backfilling. If grout settles then

the bottom depth of the next backfill layer may be deeper than the top measured depth of the previous grout backfill.

2) See Piezometer Installation Sketch for details.

Project: Cherrystone Creek Watershed Dam 2A	Boring ID:	B-651A
Location: Chatham, VA	Date: 1/16/2023	
Schnabel Project No: 22210031.1	By: PWA	Date: 1/16/2023
Client Name: Pittsylvania County	Checked: ECU	Date: <u>3/29/2023</u>

Drilling and Borehole Volume Information							
Method(s) of Drilling:	3-1/4" HSA		Diar	neter of Borehole	e (inches) (/	۹):	7.3
Completion Date of Drilling:	1/16/2023		Tota	I Depth of Boreh	ole After Di	rilling (ft):	34
Depth of Borehole at Start of B	ackfilling (ft) (B):	34	Dep	th of Water at Sta	art of Backf	filling (ft):	Dry
Calculated Volume of Borehole	e [0.041 * A ² * B] =	74	.3	gal * 0.134 =	10.0	feet ³	

Backfill Record for Solid Materials						
Method:		ternating Layers		Single Material Type		
Туре:	Size:	# of	Bag Wt (lb):	Total Vol Placed (ft ³):		
		Bags:	Bag Vol (ft ³):	Est Thickness / Layer (ft):		
Туре:	Size:	# of	Bag Wt (lb):	Total Vol Placed (ft ³):		
		Bags:	Bag Vol (ft ³):	Est Thickness / Layer (ft):		

	Backfill F	Record for Liqu	id Materials (Gi	rout)	
Grout Mix	Portland Cement (# of bags): 1		Weight of bag (b): 94	Water (gal): 30
Components (per batch):	Bentonite (Ib):	25	Grout Mixing Me	ethod:	Bucket
Grout backfilled w	vith tremie method?	es/ No	•		
		Placement \	/olumes		
Grouting	Date/Time	Start Depth (feet)	Tremie Depth (feet)	Calculated Volume to b Placed (gal	Placed (gal)
Initial Filling	1-16-2023 / 2:30 PM	34	33	74.3	80
Top Off #1					
Top Off #2					
Top Off #3					
Top Off #4					
	•	Total E	stimated Volum	e Placed (gal):	55
Nas a stake plac	ed and labeled to indicate bo	ring location and	ID after backfill	was complete	d? (Yes)/ No
Comments:					<u> </u>

Project: Cherrystone Creek Watershed Dam 2A	Boring ID:	B-651B
Location: Chatham, VA	Date: 1/16/2023	
Schnabel Project No: 22210031.1	By: PWA	Date: 1/17/2023
Client Name: Pittsylvania County	Checked: ECU	Date: <u>3/29/2023</u>

Drilling and Borehole Volume Information							
Method(s) of Drilling:	3-1/4" HSA		Diar	neter of Borehole	e (inches) (A):	7.3
Completion Date of Drilling:	1/16/2023		Tota	al Depth of Boreh	ole After D	rilling (ft):	14
Depth of Borehole at Start of E	ackfilling (ft) (B):	18	Dep	th of Water at Sta	art of Back	filling (ft):	Dry
Calculated Volume of Borehole	e [0.041 * A ² * B] =	39	.3	gal * 0.134 =	5.3	feet ³	

Backfill Record for Solid Materials					
Method:					
Туре:	Size:	# of	Bag Wt (lb):	Total Vol Placed (ft ³):	
		Bags:	Bag Vol (ft ³):	Est Thickness / Layer (ft):	
Туре:	Size:	# of	Bag Wt (lb):	Total Vol Placed (ft ³):	
		Bags:	Bag Vol (ft ³):	Est Thickness / Layer (ft):	

	Backfill Re	ecord for Liqu	id Materials (Gr	out)		
Grout Mix	Portland Cement (# of bags):	1	Weight of bag (I	b): 94	Water (gal): 30	
Components (per batch):	Bentonite (Ib):	25	Grout Mixing Me	ethod:	Bucket	
Grout backfilled with tremie method? Yes No						
		Placement \	/olumes			
Grouting	Date/Time	Start Depth (feet)	Tremie Depth (feet)	Calculated Volume to b Placed (gal	e Estimated Volume Placed (gal)	
Initial Filling	1-18-2023 / 10:00 AM	18	-	39.3	42	
Top Off #1						
Top Off #2						
Top Off #3						
Top Off #4						
		Total E	Estimated Volume	e Placed (gal):	42	
Was a stake place	ed and labeled to indicate borir	ng location and	ID after backfill	was completed	d? Ye3/No	
Comments: Two 2	24" undisturbed samples were t	taken below th	e 14 foot drilled o	depth which in	creased the total	
backfill depth to 1	8 feet.					

Project: Cherrystone Creek Watershed Dam 2A	Boring ID:	B-652
Location: Chatham, VA	Date: 1/26/2023	
Schnabel Project No: 22210031.100	By: ECU	Date: 1/26/2023
Client Name: Pittsylvania County	Checked: PWA	Date: 3/28/2023

Drilling and Borehole Volume Information					
Method(s) of Drilling: 4-1/4" HSA & NQ2 Wireline Coring	Diameter of Borehole (inches) (A): 8.3 & 3				
Completion Date of Drilling: 1/25/2023	Total Depth of Borehole After Drilling (ft): 62.6				
Depth of Borehole at Start of Backfilling (ft) (B): 62.6	Depth of Water at Start of Backfilling (ft): Dry				
Calculated Volume of Borehole [0.041 * A ² * B] = 11	4.1 gal * 0.134 = 15.3 _{feet} ³				

Backfill Record for Solid Materials					
Method:					
Туре:	Size:	# of	Bag Wt (lb):	Total Vol Placed (ft ³):	
		Bags:	Bag Vol (ft ³):	Est Thickness / Layer (ft):	
Туре:	Size:	# of	Bag Wt (lb):	Total Vol Placed (ft ³):	
		Bags:	Bag Vol (ft ³):	Est Thickness / Layer (ft):	

	Backfill Re	cord for Liqu	id Materials (Gr	out)	
Grout Mix	Portland Cement (# of bags): 1		Weight of bag (lb): 94 W		Water (gal): 30
Components (per batch):	Bentonite (Ib): 25		Grout Mixing Me	ethod: Circul	ate through Moyno pump
Grout backfilled v	vith tremie method?) No	•		
		Placement \	/olumes		
Grouting	Date/Time	Start Depth (feet)	Tremie Depth (feet)	Calculated Volume to b Placed (gal	e Estimated Volume
Initial Filling	01-26-2023 / 4:30 PM	62.6	62	114.1	120
Top Off #1	01-27-2023 / 4:30 PM	11			35
Top Off #2					
Top Off #3					
Top Off #4					
		Total E	stimated Volume	e Placed (gal):	155
Was a stake plac	ed and labeled to indicate borin	g location and	ID after backfill	was complete	d? Yes No
Comments:					

Project: Cherrystone Creek Watershed Dam 2A	Boring ID:	B-751
Location: Chatham, VA	Date: 1/10/2023	
Schnabel Project No: 22210031.1	By: PWA	Date: 1/10/2023
Client Name: Pittsylvania County	Checked: ECU	Date: 3/29/2023

Drilling and Borehole Volume Information							
Method(s) of Drilling:	3-1/4" HSA		Diar	neter of Borehole	(inches) (/	۹):	7.3
Completion Date of Drilling:	1/10/2023		Tota	I Depth of Boreho	ole After Di	rilling (ft):	34.1
Depth of Borehole at Start of E	ackfilling (ft) (B):	34.1	Dep	th of Water at Sta	art of Backf	filling (ft):	4.3
Calculated Volume of Borehole	e [0.041 * A ² * B] =	74	.5	gal * 0.134 =	10.0	feet ³	

Backfill Record for Solid Materials					
Method:					
Туре:	Size:	# of	Bag Wt (lb):	Total Vol Placed (ft ³):	
		Bags:	Bag Vol (ft ³):	Est Thickness / Layer (ft):	
Туре:	Size:	# of	Bag Wt (lb):	Total Vol Placed (ft ³):	
		Bags:	Bag Vol (ft ³):	Est Thickness / Layer (ft):	

	Backfill R	ecord for Liqu	id Materials (Gi	out)	
Grout Mix	Portland Cement (# of bags): 1 Weight of bag (lb): 94			Water (gal): 30	
Components (per batch):	Bentonite (lb):	25	Grout Mixing Me	ethod:	Bucket
Grout backfilled v	vith tremie method?	s) No	•		
		Placement \	/olumes		
Grouting	Date/Time	Start Depth (feet)	Tremie Depth (feet)	Calculated Volume to b Placed (gal	e Estimated Volume Placed (gal)
Initial Filling	1-10-2023 / 10:45 AM	34	34	74.5	50
Top Off #1	1-27-2023 / 11:30 AM				30
Top Off #2	2-7-2023 / 1:30 PM				6
Top Off #3					
Top Off #4					
		Total E	stimated Volum	e Placed (gal):	86
Was a stake plac	ed and labeled to indicate bori	ng location and	ID after backfill	was completed	d? Yes/No
Comments:					

UNDISTURBED SAMPLING RECORDS

Project:	Cherrysto	Cherrystone Creek Watershed Dam 2A				Boring ID:	B-51/	<u>م</u>	
Location:	Chatham	, VA				Sample ID:	UD-1		
Schnabel Proj	iect No.:	22210031.2	100			By: EU		Date:	1/16/2023
Client Name:						Checked:	PWA	Date:	3/28/2023
		-)							
Sampler advanc	ed from _	10	feet	below (ground s	urface to	12_	feet bo	js
			Sam	pler In	formatio	n			
Tube Material:		Galvanize	d Steel		Type of	coating on T	ube:		Zinc
Tube Diameter a	and Length	n (inches):	3"x30		Conditio	n of Tube Be	fore Us	e:	Good
			Dril	ling Inf	ormatio	n			
Method of Drilling: 4-1/4" HSA Type o						Casing:		Non	e
Diameter of Bor	ehole (inch	nes):	8-1/4"		Drilling F	=luid:		None	
						or Pitcher Sa	ampler)	
1) Was sampler	advanced	l in one unifo	rm, continu	ous pus	sh withou	it rotation?			Yes / No
Comments:	und former in		الأسام مام		in a tha a la	برماسم برائم واستربره			
2) Was downwa on the drill rig?	ira iorce pr	ovided throu	ign the anii	roas us	ing the h	yaraulic arive	e mecna	anism	Yes / No
Comments: 100	- 400 psi								
3) Was the sam		ed at, above	, or below th	ne statio	c water ta	able?			Abovo
								,	Above
Comments:									
 Was water ac Comments: 	ided to the	borehole?							Yes /No
5) Was sample	driven? If y	ves record v	veight and f	all of the	e hamme	er in commen	ts		Yes No
Comments:		y00, 100014 V	voigne and n		o namin				
6) Was the with	drawl of th	e sampler de	elayed a mir	nimum o	of 5 minu	ites after pus	h?		Yes / No
Comments (reco									$\overline{}$
7) Was the tube	-					he tube prior	to extra	action?	Yes / No
Comments (reco	ord numbe	r of rotations	s or amount	of rotat	tion):				
		Samp	ole Measur	ement,	Sealing	and Labelin	g		
Sampler Penent	,	1	24			ery (inches):		24	4
Sample Length	Preserved	in Tube (aft	er bottom ~	1" remo	oved) (inc	ches):		23	
Sample Tube Ti	•					,		ndamange	
Sample Descrip	-			rse sar	nd, 15-25	5% fines, 5-1	0% fine	e to coarse	gravel,
contains mica,	reddish b	orown, mois	t						
8) Were both en	de of over	sed coil con	nle cocled	2					Yes / No
Comments (type	•		ipie sealeu	:					Teg/ NO
9) Was packing			en sealed s	ample a	and ends	of tube?			Yes / No
Comments (type	•			•					
10) Were both ends of tube capped and taped?									
Comments and	type of cap	oping: Plasti	c Cap / Du	ct Tape	•				\checkmark
11) Was the tube									
depth interval, sa	mple recove	ery, date sam	ole was taker	n? Was	an arrow	with "TOP" lab	eled on	the side of t	he Yes / No
sample?									
Supplemental C	omments:								

Project:	Cherryst	one Creek W	atershed D	am 2A		Boring ID:	B-51	A	
Location:	Chathan	n, VA				Sample ID:	UD-2		
Schnabel Pro	iect No.:	22210031.	100			By: EU		Date:	1/16/2023
Client Name:						Checked:	PWA	Date:	3/28/2023
		,							
Sampler advand	ced from	12	feet	below g	ground s	urface to	14_	feet b	gs
			Sam	pler In	formatio	n			
Tube Material:		Galvanize	d Steel		Type of	coating on Tu	ube:		Zinc
Tube Diameter	and Lengt	th (inches):	3"x30		Conditio	n of Tube Be	fore Us	e:	Good
			Dril	ling Inf	ormatio	n			
Method of Drillir	ıg:	4-1/4	" HSA		Type of	Casing:		Non	е
Diameter of Borehole (inches): 8-1/4" Drilling Fluid:								None	
		Sampling C	Checklist (N	lot app	licable f	or Pitcher Sa	ampler		$\overline{}$
1) Was sampler	advance	d in one unifo	orm, continu	ous pus	sh withou	it rotation?			Yes / No
Comments: 2) Was downwa	rd forco r	rovidod throu	iah tho drill	rode ue	ing the h	vdraulia driva	mach	nicm	Yes / No
on the drill rig?	ilu loice p		ign the unit	ious us	ing the fi	yulaulic ulive	meena		
Comments: 300) - 400 psi	i							
3) Was the sam	ple collec	ted at, above	, or below th	ne statio	c water ta	able?			Above
0								-	
Comments: 4) Was water ad	ded to th	e horehole?							Yes /No
Comments:									103 / 110
5) Was sample	driven? If	yes, record v	veight and f	all of the	e hamme	er in commen	ts.		Yes No
Comments:									
6) Was the with		•	•	nimum (of 5 minu	ites after pus	h?		Yes / No
Comments (rec 7) Was the tube				al at the	end of t	he tube prior	to extra	action?	Yes /No
Comments (rec	•								
						and Labelin	a		
Sampler Penent	tration (in	-	24	1	-	ery (inches):	9	2	4
Sample Length	•	,				• • •		23	
Sample Lengui							U	ndamange	ed
Sample Descrip	-				-			-	
contains mica,	-	• •		100 001	14, 10 20	, , , , , , , , , , , , , , , , , , ,	• /•		, gravoi,
8) Were both er	ids of exp	osed soil sar	nple sealed	?					Yes / No
Comments (type									$\underline{}$
9) Was packing material placed between sealed sample and ends of tube?								Yes / No	
Comments (type 10) Were both e									
Comments and				ct Tane	•				Yes / No
	51		•	•					
11) Was the tube									
depth interval, sa sample?	mple recov	ery, date sam	pie was takei	n? was	an arrow	with "TOP" lab	eled on	the side of t	the Yes / No
Supplemental C	ommente								I
Supplemental O	Junio	-							

r									
Project:	Cherrysto	Cherrystone Creek Watershed Dam 2A					B-51/	4	
Location:	Chatham	, VA				Sample ID:	UD-3		
Schnabel Pro	iect No.:	22210031.	100			By: EU		Date:	1/16/2023
Client Name:						Checked:	PWA	Date:	3/28/2023
		,							
Sampler advanc	ced from _	56	feet	below g	ground s	urface to	58_	feet bo	js
			San	npler In	formatio	n			
Tube Material:		Galvaniz	ed Steel		Type of	coating on Tu	ube:		Zinc
Tube Diameter	and Lengtl	h (inches):	3"x30)''	Conditio	n of Tube Be	fore Us	se:	Good
			Dril	lling Inf	ormatio	n			
Method of Drilling: 4-1/4" HSA Type						Casing:		Non	е
Diameter of Borehole (inches): 8-1/4" Drilling F						Fluid:		None	
						or Pitcher Sa	ampler)	
1) Was sampler	advanced	l in one unif	orm, continu	ious pus	sh withou	it rotation?			Yes/No
Comments:									
 Was downwa on the drill rig? 	ard force p	rovided thro	ugh the drill	rods us	ing the h	ydraulic drive	mecha	anism	Yes / No
Comments: 100	- 350 nei								
3) Was the sam		ed at, above	e, or below t	he statio	c water ta	able?			
,		,						1	Below
Comments:									
4) Was water ad	dded to the	e borehole?							Yes /No
Comments: 5) Was sample	drivon2 lf	voc rocord v	woight and f	oll of the	o homme	r in common	to		Voc No
Comments:		yes, record	weigint and i				15.		Yes No
6) Was the with	drawl of th	e sampler d	elayed a mi	nimum (of 5 minu	ites after pus	h?		Yes / No
Comments (reco									
7) Was the tube	-					he tube prior	to extra	action?	Yes /No
Comments (reco	ord numbe	er of rotation	s or amount	t of rotat	tion):				_
		Sam	ple Measur	ement,	Sealing	and Labelin	g		
Sampler Penent	tration (inc	hes):	24	Samp	le Recov	ery (inches):		18	8
Sample Length	Preserved	in Tube (af	ter bottom ~	1" remo	oved) (inc	hes):		17	
Sample Tube Ti	-				-	-		Bent	
Sample Descrip	-			oarse s	and, 15-	25% fines, 5	-10% fi	ne to coar	se gravel,
contains mica,	reddish b	prown, mois	st						
(\mathbf{x})									
8) Were both en	•		mple sealed	?					Yes / No
Comments (type			en sealed s	ample a	and ends	of tube?			Yes / No
9) Was packing material placed between sealed sample and ends of tube? Comments (type of material used): Gravel Sand									
10) Were both e									Yes/No
Comments and				ct Tape	•				
11) Was the tube									
depth interval, sa	mple recove	ery, date sam	ple was take	n? Was	an arrow	with "TOP" lab	eled on	the side of t	he Yes / No
sample?									
Supplemental C	comments:								

Project: Chertystone Creek Watershed Dam 2A Boring ID: B-S1A Location: Chatham, VA Sample ID: UD-4 Schnabel Project No.: 22210031.100 By: EU Date: 1/16/2023 Client Name: Pittsylvania County Checked: PWA Date: 3/28/2023 Sampler advanced from _58 feet below ground surface to _60 feet bgs Sampler advanced from _58 feet below ground surface to _60 feet bgs Tube Diameter and Length (inches): 3"x30" Condition of Tube Before Use: Good Diameter of Borehole (inches): 8-114" Drilling Fluid: None Diameter of Borehole (inches): 8-114" Drilling Fluid: None Sampler advanced in one uniform, continuous push without rotation? Yog / No Comments: 2) Was downward force provided through the drill rods using the hydraulic drive mechanism on the drill rg? Comments: 2) Was supple collected at, above, or below the static water table? Below Comments: 30 psi 3) Was the sample collected at, above, or below the static water table? Yeg // No Comments: 300 psi										
Schnabel Project No.: 22210031.100 By: EU Date: 1/16/2023 Client Name: Pittsylvania County Checked: PWA Date: 3/28/2023 Sampler advanced from 58 feet below ground surface to 60 feet bgs Sampler advanced from 58 feet below ground surface to 60 feet bgs Tube Diameter and Length (inches): 3*X30* Condition of Tube Before Use: Good Dilling Information Method of Drilling: 4-114* HSA Type of Coasing: None Diameter of Borehole (inches): 8-114* Drilling Fluid: None None Sampling Checklist (Not applicable for Pitcher Sampler) 1) Was sampler advanced in one uniform, continuous push without rotation? Yes / No Comments: 30 was the sample collected at, above, or below the static water table? Below Comments: 3) Was the sampler delayed a minimum of 5 minutes after push? Yes / No Owments: 9 Sample Measurement, Sealing and Labeling Yes / No Owments: 10 Minutes 9 Sample Penentration (inches): 9 Sample Penentration (inches): 24 Sample Rec	Project:	Cherryst	Cherrystone Creek Watershed Dam 2A					B-51	A	
Client Name: Pittsylvania County Checked: PWA Date: 3/28/2023 Sampler advanced from 58 feet below ground surface to 60 feet bgs Sampler Information Type of coating on Tube: Zinc Tube Diameter and Length (inches): 3"x30" Condition of Tube Before Use: Good Diliting Information Mone Diliting Information None Diameter of Borehole (inches): 8-1/4" Type of Casing: None Diameter of Borehole (inches): 8-1/4" Drilling Fluid: None Ownsents: Sampling Checklist (Not applicable for Pitcher Sampler) 1) Was sampler advanced in one uniform, continuous push without rotation? Yeg / No Comments: 30 Was downward force provided through the drill rods using the hydraulic drive mechanism on the drill rig? Below Comments: 30 Was the sample collected at, above, or below the static water table? Below Comments: 90 Was sample driven? If yes, record weight and fall of the hammer in comments. Yes	Location:	Chatham	n, VA				Sample ID:	UD-4		
Client Name: Pittsylvania County Checked: PWA Date: 3/28/2023 Sampler advanced from 58 feet below ground surface to 60 feet bgs Sampler Information Type of coating on Tube: Zinc Tube Diameter and Length (inches): 3"x30" Condition of Tube Before Use: Good Diliting Information Method of Drilling: 4-1/4" HSA Type of Casing: None Diameter of Borehole (inches): 8-1/4" Drilling Fluid: None Onderstring: 2) Was downward force provided through the drill rods using the hydraulic drive mechanism on the drill rogs using the hydraulic drive mechanism Yes / No Comments: 30 Was the sample collected at, above, or below the static water table? Below Comments: 30 Was sample driven? If yes, record weight and fall of the hammer in comments. Yes / No Comments: 2) Was sample driven? If yes, record weight and fall of the hammer in comments. Yes / No Gomments: 9 Sample Measurement, Sealing and Labeling Sample Advanced to shear the material at the end of the tube prior to extraction? Yes / No Comments: 9 Sample Resorved inches): 9 Sample Description:	Schnabel Pro	ject No.:	22210031	.100			By: EU		Date:	1/16/2023
Sampler advanced from58feet below ground surface to60feet bgs Sampler lnformation Tube Material: Galvanized Steel Type of coating on Tube: Zinc Tube Diameter and Length (inches): 3"x30" Condition of Tube Before Use: Good Diameter of Borehole (inches): 8-1/4" Type of Casing: None Diameter of Borehole (inches): 8-1/4" Drilling Fluid: None 1) Was sampler advanced in one uniform, continuous push without rotation? Yes//No Comments: 2) Was downward force provided through the drill rods using the hydraulic drive mechanism on the drill rig? Yes//No Comments: 30 was the sample collected at, above, or below the static water table? Below Comments: 3) Was the sample diven? If yes, record weight and fall of the hammer in comments. Yes //No 6) Was sample driven? If yes, record weight and fall of the tube prior to extraction? Yes //No Comments: 9 Yes //No 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Yes //No Comments: 9 Sample Measurement, Sealing and Labeling Sample Preserved in Tube (after bottom -1" removed) (inches): 9 Sample Tube Ti							Checked:	PWA	Date:	3/28/2023
Sampler Information Tube Material: Galvanized Steel Type of coating on Tube: Zinc Tube Diameter and Length (inches): 3"x30" Condition of Tube Before Use: Good Dilling Information Method of Drilling: 4-1/4" HSA Type of Casing: None Diameter of Borehole (inches): 8-1/4" Drilling Fluid: None Sampling Checklist (Not applicable for Pitcher Sampler) 0/1000 (Yee) / No 1) Was sampler advanced in one uniform, continuous push without rotation? (Yee) / No Comments: 0/1000 (Yee) / No 2) Was downward force provided through the drill rods using the hydraulic drive mechanism on the drill rig? (Yee) / No Comments: 0 (Yee) / No 3) Was the sample collected at, above, or below the static water table? Below Comments: 9 Yees (Yee) / No Comments: 10 Minutes Yees (Yee) / No Comments: 10 Minutes Yees (Yee) / No Comments: 10 Minutes Yees (Yee) / No Or Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Yees (Yee) / No Comments: (record number of rotations or amount of rotation): </td <td></td>										
Tube Material: Galvanized Steel Type of coating on Tube: Zinc Tube Diameter and Length (inches): 3"x30" Condition of Tube Before Use: Good Diameter of Borehole (inches): 8-1/4" Diling Information None Diameter of Borehole (inches): 8-1/4" Diling Fluid: None 1) Was sampler advanced in one uniform, continuous push without rotation? Yee// No Comments: 2) Was downward force provided through the drill rods using the hydraulic drive mechanism on the drill rig? Yee// No Comments: 3) Was the sample collected at, above, or below the static water table? Below Comments: 4) Was water added to the borehole? Yee Yee Comments: 6) Was sample driven? If yes, record weight and fall of the hammer in comments. Yee Yee 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Yee Yee Comments: (record rest time): 10 Minutes Yee Soft 7) Was the withorawl of the sampler delayed, pertical at the end of the tube prior to extraction? Yee Yee Comments (record number of rotations or amount of rotation): Sample Measurement, Sealing and Labeling Sample Penentration (inches): 2 Sample Recovery (inches): 9 Sample	Sampler advanc	ced from	58_	feet	below g	ground s	urface to	60_	feet bo	gs
Tube Diameter and Length (inches): 3"x30" Condition of Tube Before Use: Good Drilling Information Method of Drilling: 4-1/4" HSA Type of Casing: None Diameter of Borehole (inches): 8-1/4" Drilling Fluid: None Market of Daribling: 4-1/4" HSA Type of Casing: None Diameter of Borehole (inches): 8-1/4" Drilling Fluid: None Sampler advanced in one uniform, continuous push without rotation? Order (Inches): 8-1/4" () Was sampler advanced in one uniform, continuous push without rotation? Order (Inches): 9/1 No () Was downward force provided through the drill rods using the hydraulic drive mechanism on the drill rg? Order (Inches): Below Comments: 30 Was the sample collected at, above, or below the static water table? Below Comments: Yes (Comments: Yes (No 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Yes (No Comments: Yes (No Comments: Yes (No 7) Was the tube slowly rolated to shear the material at the end of the tube prior to extraction? Yes (No Comments: Sample Measurement, Sealing and Labeling Sample Pas				San	pler In	formatio	n			
Drilling Information Method of Drilling: 4-1/4" HSA Type of Casing: None Diameter of Borehole (inches): 8-1/4" Drilling Fluid: None Sampling Checklist (Not applicable for Pitcher Sampler) 1) Was sampler advanced in one uniform, continuous push without rotation? (Pel/No Comments: (Pel/No (Pel/No (Pel/No 2) Was downward force provided through the drill rods using the hydraulic drive mechanism on the drill rig? (Pel/No Comments: 30 psi (Pel/No 3) Was the sample collected at, above, or below the static water table? Below Comments: (Pel/No (Pel/No 4) Was water added to the borehole? Yes (No Comments: (Pel/No (No 5) Was sample driven? If yes, record weight and fall of the hammer in comments. (Yes (No Comments (record rest time): 10 Minutes (Pel/No 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? (Yes (No Comments (record number of rotations or amount of rotation): 9 (Sample Measurement, Sealing and Labeling Sample Penetritation (inches): 24 Sample Recovery (inches): 9 (Sample Description: Clayey Sand	Tube Material:		Galvaniz	ed Steel		Type of	coating on Tu	ube:		Zinc
Method of Drilling: 4-1/4" HSA Type of Casing: None Diameter of Borehole (inches): 8-1/4" Drilling Fluid: None Sampling Checklist (Not applicable for Pitcher Sampler) 1) Was sampler advanced in one uniform, continuous push without rotation? Yes// No Comments: Yes// No Yes// No Yes// No 2) Was downward force provided through the drill rods using the hydraulic drive mechanism Yes// No Comments: 30 psi Sample collected at, above, or below the static water table? Below Comments: Yes /	Tube Diameter a	and Lengt	th (inches):	3"x30		Conditio	n of Tube Be	fore Us	e:	Good
Diameter of Borehole (inches): 8-1/4" Drilling Fluid: None Sampling Checklist (Not applicable for Pitcher Sampler) 1) Was sampler advanced in one uniform, continuous push without rotation? Comments: 2) Was downward force provided through the drill rods using the hydraulic drive mechanism on the drill rig? Comments: 300 psi 3) Was the sample collected at, above, or below the static water table? Below Comments: 3) Was the sample collected at, above, or below the static water table? Comments: 5) Was apple collected at, above, or below the static water table? Somments: 5) Was sample driven? If yes, record weight and fall of the hammer in comments. Comments: 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Comments (record rest time): 10 Minutes 7) Was the vibe slowly rotated to shear the material at the end of the tube prior to extraction? Comments (record rest time): 10 Minutes Sample Measurement, Sealing and Labeling Sample Penentration (inches): 24 Sample Recovery (inches): 9 Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Comments (type of material laced between sealed sample and ends of tube? Comments (type of material laced): Gravel Sand 10) Were both ends of tube capped and taped? Comments and type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the for / No sample?				Dril	ling Inf	ormatio	n			
Sampling Checklist (Not applicable for Pitcher Sampler) 1) Was sampler advanced in one uniform, continuous push without rotation? Comments: 2) Was downward force provided through the drill rods using the hydraulic drive mechanism on the drill rig? Comments: 30 psi 3) Was the sample collected at, above, or below the static water table? Below Comments: 40 4) Was water added to the borehole? Yes (No Comments: 5) Was sample driven? If yes, record weight and fall of the hammer in comments. 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Yes (No Comments: (Yes / No 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Yes (No Comments (record rest time): 10 Minutes Yes / No 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Yes / No Comments (record number of rotations or amount of rotation): Sample Recovery (inches): 9 Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 9 Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist Yes / No 8) Were both ends of exposed soil sample sealed?	Method of Drilling: 4-1/4" HSA Type						Casing:		Non	e
1) Was sampler advanced in one uniform, continuous push without rotation? Comments: 2) Was downward force provided through the drill rods using the hydraulic drive mechanism on the drill rig? Comments: 300 psi 3) Was the sample collected at, above, or below the static water table? Below Comments: 4) Was water added to the borehole? Comments: 5) Was sample driven? If yes, record weight and fall of the hammer in comments. Comments: 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Comments (record rest time): 10 Minutes 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Comments (record rest time): 10 Minutes 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Comments (record number of rotations or amount of rotation): Sample Measurement, Sealing and Labeling Sample Penentration (inches): 24 Sample Recovery (inches): 9 Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Comments (type of material place between sealed sample and ends of tube? Comments (type of material place between sealed sample and ends of tube? Comments (type of material place between sealed sample and ends of tube? Comments (type of material place between sealed sample and ends of tube? Comments of tube capped and taped? Comments and type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?	Diameter of Borehole (inches): 8-1/4" Drilling Flu						=luid:		None	
Comments: Yes / No 2) Was downward force provided through the drill rods using the hydraulic drive mechanism on the drill rig? Yes / No Comments: 30 psi 3) Was the sample collected at, above, or below the static water table? Below Comments: Yes / No 4) Was water added to the borehole? Yes / No Comments: Yes / No 5) Was sample driven? If yes, record weight and fall of the hammer in comments. Yes / No Comments: Yes / No 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Yes / No Comments (record rest time): 10 Minutes Yes / No Comments (record number of rotations or amount of rotation): Yes / No Sample Penentration (inches): 24 Sample Recovery (inches): 9 Sample Length Preserved in Tube (after botom ~1" removed) (inches): 9 9 9 Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist Yes / No 8) Were both ends of exposed soil sample sealed? Yes / No Yes / No Comments (type of seal): Wax Yes / No Yes / No Owere both ends of exposed soil sample sealed? Yes /			Sampling	Checklist (N	lot app	licable f	or Pitcher Sa	ampler		
2) Was downward force provided through the drill rods using the hydraulic drive mechanism on the drill rig? Comments: 300 psi 3) Was the sample collected at, above, or below the static water table? Below Comments: 4) Was water added to the borehole? Comments: 5) Was sample driven? If yes, record weight and fall of the hammer in comments. Comments: 5) Was sthe withdrawl of the sampler delayed a minimum of 5 minutes after push? Comments: 7) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Comments (record rest time): 10 Minutes 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Comments (record number of rotations or amount of rotation): Sample Measurement, Sealing and Labeling Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Comments (type of seal): Wax 9) Was packing material placed between sealed sample and ends of tube? 1) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?	· · ·	· advance	d in one unif	orm, continu	ious pus	sh withou	it rotation?			Yes/No
on the drill rig? Comments: 300 psi 3) Was the sample collected at, above, or below the static water table? Below Comments: 4) Was water added to the borehole? Comments: 5) Was sample driven? If yes, record weight and fall of the hammer in comments. Comments: 6) Was sample driven? If yes, record weight and fall of the hammer in comments. Comments: 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Comments (record rest time): 10 Minutes 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Comments (record rest time): 10 Minutes 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Comments (record number of rotations or amount of rotation): Sample Measurement, Sealing and Labeling Sample Penentration (inches): 24 Sample Recovery (inches): 9 Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Comments (type of seal): Wax 9) Was packing material placed between sealed sample and ends of tube? Comments (type of material used): Gravel Sand 10) Were both ends of tube capped and taped? Comments and type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?	•									
Comments: 300 psi 3) Was the sample collected at, above, or below the static water table? Below Comments: 4) Was water added to the borehole? Yes (No Comments: 5) Was sample driven? If yes, record weight and fall of the hammer in comments. Gomments: 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Comments (record rest time): 10 Minutes 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Comments (record number of rotations or amount of rotation): Sample Penentration (inches): 24 Sample Recovery (inches): 9 Sample Tube Tip Condition (undamaged, bent, nicked, crimped, etc): Undamaged Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Yes / No Comments (type of seal): Wax Yes / No 9) Was packing material placed between sealed sample and ends of tube? Yes / No Comments (type of ada taped? Yes / No Comments (type of ada taped? Yes / No Comments and type of capping: Plastic Cap / Duct Tape Yes / No	· ·	ard force p	provided thro	ough the drill	rods us	ing the h	ydraulic drive	mecha	anism	Yes / No
3) Was the sample collected at, above, or below the static water table? Below Comments: Yes /No 4) Was water added to the borehole? Yes /No Comments: Yes /No 5) Was sample driven? If yes, record weight and fall of the hammer in comments. Yes /No Comments: Yes /No 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Yes /No Comments (record rest time): 10 Minutes Yes /No 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Yes /No Comments (record number of rotations or amount of rotation): Sample Measurement, Sealing and Labeling Sample Penentration (inches): 24 Sample Recovery (inches): 9 Sample Tube Tip Condition (undamaged, bent, nicked, crimped, etc): Undamaged Sample Tube Tip Condition (undamaged, bent, nicked, crimped, etc): Undamaged 8) Were both ends of exposed soil sample sealed? Yes / No Yes / No Comments (type of seal): Wax Yes / No Yes / No 9) Was packing material placed between sealed sample and ends of tube? Yes / No Comments and type of capping: Plastic Cap / Duct Tape Yes / No 11) Was the tube and cap appropriately labeled with project nam	-	nei								
Comments: 4) Was water added to the borehole? Comments: 5) Was sample driven? If yes, record weight and fall of the hammer in comments. Comments: 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Comments (record rest time): 10 Minutes 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Comments (record number of rotations or amount of rotation): Sample Measurement, Sealing and Labeling Sample Penentration (inches): 24 Sample Recovery (inches): 9 Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Comments (type of seal): Wax 9) Was packing material placed between sealed sample and ends of tube? Comments (type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?			ted at. abov	e. or below t	he statio	c water ta	able?			
4) Was water added to the borehole? Yes / No Comments: Yes / No 5) Was sample driven? If yes, record weight and fall of the hammer in comments. Yes / No Comments: Yes / No 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Yes / No Comments (record rest time): 10 Minutes Yes / No 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Yes / No Comments (record number of rotations or amount of rotation): Yes / No Sample Measurement, Sealing and Labeling Sample Recovery (inches): 9 Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 9 Sample Tube Tip Condition (undamaged, bent, nicked, crimped, etc): Undamaged Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist Yes / No 8) Were both ends of exposed soil sample sealed? Yes / No Comments (type of seal): Wax Yes / No 9) Was packing material placed between sealed sample and ends of tube? Yes / No Comments (type of material used): Gravel Sand Yes / No 10) Were both ends of tube capped and taped? Yes / No Comments and typ	-,			-,						Below
Comments: Yes No 5) Was sample driven? If yes, record weight and fall of the hammer in comments. Yes No Comments: Yes No 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Yes No Comments (record rest time): 10 Minutes Yes No 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Yes No Comments (record number of rotations or amount of rotation): Yes No Comments (record number of rotations or amount of rotation): Yes No Sample Measurement, Sealing and Labeling Sample recovery (inches): 9 Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 9 Sample Tube Tip Condition (undamaged, bent, nicked, crimped, etc): Undamaged Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist Yes / No 8) Were both ends of exposed soil sample sealed? Yes / No Comments (type of material placed between sealed sample and ends of tube? Yes / No Comments (type of material placed between sealed sample and ends of tube? Yes / No Comments (type of material placed between sealed sample and ends of tube? Yes / No Comments (type of capping: Plastic	Comments:									
5) Was sample driven? If yes, record weight and fall of the hammer in comments. Comments: 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Comments (record rest time): 10 Minutes 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Comments (record number of rotations or amount of rotation): Sample Measurement, Sealing and Labeling Sample Penentration (inches): 24 Sample Recovery (inches): 9 Sample Tube Tip Condition (undamaged, bent, nicked, crimped, etc): 9 Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Comments (type of seal): Wax 9) Was packing material placed between sealed sample and ends of tube? Comments (type of material used): Gravel Sand 10) Were both ends of tube capped and taped? Comments and type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?	· ·	dded to the	e borehole?							Yes /No
Comments: Gomments:		-lui: 0			- 11 - 6 41-			4-		
 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? Comments (record rest time): 10 Minutes 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Comments (record number of rotations or amount of rotation): Sample Measurement, Sealing and Labeling Sample Penentration (inches): 24 Sample Recovery (inches): 9 Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 Sample Tube Tip Condition (undamaged, bent, nicked, crimped, etc): Undamaged Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Comments (type of material placed between sealed sample and ends of tube? Yes / No Comments (type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample? 		ariven? If	yes, record	weight and t	all of the	e namme	er in commen	IS.		Yes INO
Comments (record rest time): 10 Minutes 7) Was the tube slowly rotated to shear the material at the end of the tube prior to extraction? Comments (record number of rotations or amount of rotation): Sample Measurement, Sealing and Labeling Sample Penentration (inches): 24 Sample Recovery (inches): 9 Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 Sample Tube Tip Condition (undamaged, bent, nicked, crimped, etc): Undamaged Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Yes / No Comments (type of seal): Wax Yes / No 9) Was packing material placed between sealed sample and ends of tube? Yes / No Comments (type of material used): Gravel Sand Yes / No 10) Were both ends of tube capped and taped? Yes / No Comments and type of capping: Plastic Cap / Duct Tape Yes / No 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?		drawl of th	ne sampler o	delayed a mi	nimum	of 5 minu	ites after pus	h?		Yes / No
Comments (record number of rotations or amount of rotation): Sample Measurement, Sealing and Labeling Sampler Penentration (inches): 24 Sample Recovery (inches): 9 Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 9 Sample Tube Tip Condition (undamaged, bent, nicked, crimped, etc): Undamaged Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Yes/ No Comments (type of seal): Wax Yes/ No 9) Was packing material placed between sealed sample and ends of tube? Yes/ No Comments (type of material used): Gravel Sand Yes/ No 10) Were both ends of tube capped and taped? Yes/ No Comments and type of capping: Plastic Cap / Duct Tape Yes/ No 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?	Comments (reco	ord rest tir	me): 10 Min	utes			-			
Sample Measurement, Sealing and Labeling Sampler Penentration (inches): 24 Sample Recovery (inches): 9 Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 Sample Tube Tip Condition (undamaged, bent, nicked, crimped, etc): Undamaged Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Yes / No Comments (type of seal): Wax Yes / No 9) Was packing material placed between sealed sample and ends of tube? Yes / No Comments (type of material used): Gravel Sand Yes / No 10) Were both ends of tube capped and taped? Yes / No Comments and type of capping: Plastic Cap / Duct Tape Yes / No 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?		-					he tube prior	to extra	action?	Yes /No
Sampler Penentration (inches): 24 Sample Recovery (inches): 9 Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 Sample Tube Tip Condition (undamaged, bent, nicked, crimped, etc): Undamaged Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 9 8) Were both ends of exposed soil sample sealed? Yee / No Comments (type of seal): Wax 9 9) Was packing material placed between sealed sample and ends of tube? Yee / No Comments (type of material used): Gravel Sand Yee / No 10) Were both ends of tube capped and taped? Yee / No Comments and type of capping: Plastic Cap / Duct Tape Yee / No 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?	Comments (reco	ord numbe	er of rotatior	ns or amount	of rotat	tion):				•
Sample Length Preserved in Tube (after bottom ~1" removed) (inches): 9 Sample Tube Tip Condition (undamaged, bent, nicked, crimped, etc): Undamaged Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) 8) Were both ends of exposed soil sample sealed? Yes / No Comments (type of seal): Wax Yes / No 9) Was packing material placed between sealed sample and ends of tube? Yes / No Comments (type of material used): Gravel Sand Yes / No 10) Were both ends of tube capped and taped? Yes / No Comments and type of capping: Plastic Cap / Duct Tape Yes / No 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample? Yes / No			Sam	ple Measur	ement,	Sealing	and Labelin	g		
Sample Tube Tip Condition (undamaged, bent, nicked, crimped, etc): Undamaged Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Yeg / No Comments (type of seal): Wax Yeg / No 9) Was packing material placed between sealed sample and ends of tube? Yeg / No Comments (type of material used): Gravel Sand Yeg / No 10) Were both ends of tube capped and taped? Yeg / No Comments and type of capping: Plastic Cap / Duct Tape Yeg / No 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample? Yeg / No	Sampler Penent	tration (ind	ches):	24	Samp	le Recov	ery (inches):		g	•
Sample Description: Clayey Sand (SC), fine to coarse sand, 15-25% fines, 5-10% fine to coarse gravel, contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Comments (type of seal): Wax 9) Was packing material placed between sealed sample and ends of tube? Comments (type of material used): Gravel Sand 10) Were both ends of tube capped and taped? Comments and type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample for the sample?	Sample Length	Preserved	d in Tube (at	ter bottom ~	1" remo	oved) (inc	ches):		9	
contains mica, reddish brown, moist 8) Were both ends of exposed soil sample sealed? Comments (type of seal): Wax 9) Was packing material placed between sealed sample and ends of tube? Comments (type of material used): Gravel Sand 10) Were both ends of tube capped and taped? Comments and type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?	Sample Tube Ti	ip Conditio	on (undama	ged, bent, ni	cked, cr	imped, e	tc):	l	Jndamage	d
 8) Were both ends of exposed soil sample sealed? Comments (type of seal): Wax 9) Was packing material placed between sealed sample and ends of tube? Comments (type of material used): Gravel Sand 10) Were both ends of tube capped and taped? Comments and type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample? 	Sample Descrip	tion: Clay	ey Sand (S	C), fine to c	oarse s	and, 15-	25% fines, 5	-10% fi	ne to coar	se gravel,
Comments (type of seal): Wax 9) Was packing material placed between sealed sample and ends of tube? Comments (type of material used): Gravel Sand 10) Were both ends of tube capped and taped? Comments and type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?	contains mica,	reddish l	brown, moi	st						
Comments (type of seal): Wax 9) Was packing material placed between sealed sample and ends of tube? Comments (type of material used): Gravel Sand 10) Were both ends of tube capped and taped? Comments and type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?										\frown
 9) Was packing material placed between sealed sample and ends of tube? Comments (type of material used): Gravel Sand 10) Were both ends of tube capped and taped? Comments and type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample? 	· ·	•		mple sealed	?					Yes / No
Comments (type of material used): Gravel Sand 10) Were both ends of tube capped and taped? Comments and type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?							of turb of			
 10) Were both ends of tube capped and taped? Comments and type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample? 										Yes / No
Comments and type of capping: Plastic Cap / Duct Tape 11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?										Yes/No
depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?					ct Tape	•				
depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?	11) Was the tub -	and acr =	nnronriotal	abolod with	oloot no	mo horin	a number er		bor come	
	depth interval, sar									
		omments	:							

Project:	Cherryston	e Creek Wa	tershed Dan	n 2A	Boring ID:	B-651	A			
Location:	Chatham, \	/A			Sample ID:	UD-01				
Schnabel Proj	iect No.: 2	2210031.1			By: PWA			/16/2023		
Client Name:		County			Checked:	EU		3/28/2023		
		,								
Sampler advanc	ed from	28	feet be	elow ground s	urface to	_30	feet bg:	S		
			Sampl	er Informatio	n					
Tube Material:		Galvanized	Steel	Type of	coating on Tu	ube:	2	Zinc		
Tube Diameter a	and Length (inches):	3"x30"	Conditio	on of Tube Be	fore Us	e:	Good		
			Drillin	g Informatio	n					
Method of Drillin	ng: 3-1	/4" Hollow	Stem Auger	· Type of	Type of Casing: None					
Diameter of Bor	ehole (inche	s):	7-1/4"	Drilling I	=luid:		None			
Sampling Checklist (Not applicable for Pitcher Sampler)										
1) Was sampler Comments:	advanced ir	n one uniforr	n, continuou	s push withou	it rotation?			Yes/No		
2) Was downward force provided through the drill rods using the hydraulic drive mechanism (Yes)/ No on the drill rig?										
Comments: 700	psi down p	ressure								
3) Was the sample collected at, above, or below the static water table? Above										
						l	~	bove		
Comments:	Idad ta tha h	arabala?						Vac Na		
4) Was water added to the borehole? Yes No Comments:										
5) Was sample driven? If yes, record weight and fall of the hammer in comments.										
Comments:										
6) Was the with		•	ayed a minin	num of 5 minu	ites after push	า?		Yes/ No		
Comments (reco 7) Was the tube			the material	at the end of t	be tube prior	to ovtro	action?	(Yes) No		
Comments (reco	•							Tes No		
				nent, Sealing	and Labeling	3				
Sampler Penent	tration (inche	-		ample Recov		5	18			
Sample Length	,	,			•		17			
Sample Tube Ti						Be	nt after reti	rieval		
Sample Descrip	•	, î			,	low pl	asticity			
8) Were both en	ids of expos	ed soil samp	le sealed?					Yes/No		
Comments (type								Yes)/ No		
 Was packing material placed between sealed sample and ends of tube? Comments (type of material used): Sand 										
								(Yes)/No		
10) Were both ends of tube capped and taped? Comments and type of capping: Red Plastic Cap										
4 4 \ \ \ \ \ \ 4 \ 4 \ 1										
11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the sample?										
Supplemental C	ommente:	Ha	ad to push v	with 700 psi o	down pressu	re; onl	y able to dr	ive 18"		
Supplemental C	onniento.		-	-	-					

Project:	Cherryst	one Creek Wa	atershed Dam 2A		Boring ID:	B-651	A		
Location:		chatham, VA			Sample ID: UD-02				
								4.0.000	
Schnabel Proj					By: PWA		Date: _/		
Client Name:	Pittsylvai	hia County			Checked:	EU	Date:	3/28/2023	
Sampler advanc	ed from	30	feet below g	ground s	urface to	_32	feet bgs	;	
			Sampler In	formatio	n				
Tube Material:		Galvanized	l Steel	Type of	coating on Tu	ıbe:	Z	linc	
Tube Diameter a	and Lengt	h (inches):	3"x30"	Conditio	n of Tube Be	fore Us	e:	Good	
			Drilling Inf	ormatio	n				
Method of Drillin	ig: 3	3-1/4" Hollow	Stem Auger	Type of	Casing:		None		
Diameter of Bor	ehole (inc	hes):	7-1/4"	Drilling F	Fluid:		None		
		Sampling Cl	necklist (Not app	licable f	or Pitcher Sa	mpler)			
1) Was sampler	advanced	d in one unifor	m, continuous pus	sh withou	t rotation?			Yes/No	
Comments:								\sim	
	rd force p	rovided throug	h the drill rods us	ing the h	ydraulic drive	mecha	nism	(Yes)/No	
on the drill rig?	n al danu								
Comments: 700			or below the station	r water ta	able?				
o) was the sam							A	oove	
Comments:						L			
4) Was water ac	ded to the	e borehole?						Yes No	
Comments:									
5) Was sample driven? If yes, record weight and fall of the hammer in comments.									
Comments: 6) Was the withdrawl of the sampler delayed a minimum of 5 minutes after push? (Yes) No									
Comments (reco		•	ayeu a minimum (ites alter pusi	1:			
			the material at the	e end of t	he tube prior	to extra	action?	Yes) No	
Comments (reco	ord numbe	er of rotations	or amount of rotat	tion):					
		Sampl	e Measurement,	Sealing	and Labeling	g			
Sampler Penent	ration (inc	ches):	7 Samp	le Recov	ery (inches):		3		
Sample Length I	Preserved	l in Tube (afte	r bottom ~1" remo	oved) (inc	hes):		2.5		
Sample Tube Ti	p Conditic	on (undamage	d, bent, nicked, cr	imped, e	tc):		Undamage	d	
Sample Descrip	tion: Red	dish brown, S	ilt, low plasticity	1					
8) Were both en	•		ple sealed?					Yes/No	
Comments (type					of turk of				
			n sealed sample a	and ends	of tube?			Yes/No	
Comments (type 10) Were both e								Yes / No	
Comments and									
			•						
11) Was the tube and cap appropriately labeled with project name, boring number, sample number, sample depth interval, sample recovery, date sample was taken? Was an arrow with "TOP" labeled on the side of the Yesy No									
depth interval, sar sample?	mple recov	ery, date sampl	e was taken? Was	an arrow	with "TOP" labe	eled on f	the side of the		
		На	d to push with 70)0 nei da	wn nressure	only	able to driv	e 3" but	
Supplemental C			-	-	-	-		, <i>b</i> ut	
returned 7" rec	overy. Ma	aterial suspe	cted to have falle	en into tu	ibe. Sample	paggeo	J.		

Project:	Cherrysto	one Creek W		Boring ID:	B-651	В			
Location:	Chatham	, VA				Sample ID:	UD-01		
Schnabel Proj	ect No ·	22210031.1				By: PWA			1/16/2023
Client Name:		ia County				Checked:	EU	Date:	3/28/2023
onent Name.									
Sampler advanc	ed from	14	feet	below g	ground su	urface to	_16	feet b	gs
			Sam	pler Inf	formatio	n			
Tube Material:		Galvanize	d Steel		Type of	coating on Tu	ıbe:		Zinc
Tube Diameter a	and Length	n (inches):	3"x30"	'	Conditio	n of Tube Be	fore Use	e:	Good
			Drill	ing Inf	ormatior	า			
Method of Drillin	ıg: 3	-1/4" Hollow	Stem Aug	er	Type of	Casing:		Nor	e
Diameter of Borehole (inches): 7-1/4" Drilling Fluid: None									
Sampling Checklist (Not applicable for Pitcher Sampler)									
1) Was sampler	advanced	in one unifo	rm, continuo	ous pus	sh withou	t rotation?			Yes / No
Comments:								-	
2) Was downwa	rd force pr	ovided throu	gh the drill r	ods usi	ing the h	ydraulic drive	mecha	nism	Yes / No
on the drill rig?	noi doum								
Comments: 600 3) Was the sam			or below th	e static	water ta	ble?			
		cu ul, ubove,		o otatio					Above
Comments:							L		
4) Was water added to the borehole? Yes No									
Comments:									
5) Was sample driven? If yes, record weight and fall of the hammer in comments.									
Comments: 6) Was the witho	droud of th	o compler de	loved a min	imum a	of E minu	too oftor puck			
Comments (reco		•	layeu a min	imum c	or o minu	tes alter pusi	1 !		Yes/ No
7) Was the tube			the materia	al at the	end of t	he tube prior	to extra	ction?	(Yes) No
, Comments (reco	•								
`					,	and Labeling			
Sampler Penent	ration (inc		24			ery (inches):	5	2	20
Sample Length						• • •		19	
Sample Tube Ti								Undama	aed
Sample Descrip		· -							<u>,</u>
				lotiony					
8) Were both en	ids of expr	sed soil sam	nle sealed?)					Yes/No
Comments (type	•		ipio ocaloa.						
9) Was packing			en sealed sa	ample a	and ends	of tube?			(Yes)/No
Comments (type		í í							
10) Were both ends of tube capped and taped?								Yes / No	
Comments and	type of cap	oping: Red P	lastic Cap						-
11) Was the tube	and cap ap	propriately lab	eled with pro	ject nar	me, borino	g number, sam	ple num	ber, sampl	e
depth interval, sar									
sample?									

Supplemental Comments:

Project:	Cherrysto	one Creek W	atershed Da	am 2A		Boring ID:	B-651	В	
Location:	Chatham	, VA				Sample ID:	UD-02	2	
Schnabel Proj	ect No.:	22210031.1				By: PWA			1/16/2023
Client Name:		nia Countv				Checked:	EU		3/28/2023
onent Name.									
Sampler advanc	ed from	16	feet	below g	ground su	urface to	_18	feet b	gs
			Sam	pler Inf	formatio	n			
Tube Material:		Galvanize	d Steel		Type of	coating on Tu	ube:		Zinc
Tube Diameter a	and Lengtl	n (inches):	3"x30"		Conditio	n of Tube Bet	fore Us	e:	Good
			Drill	ing Inf	ormatior	า			
Method of Drillin	ıg: 3	-1/4" Hollow	v Stem Aug	er	Type of	Casing:		Nor	ie
Diameter of Borehole (inches): 7-1/4" Drilling Fluid: None									
		Sampling C	hecklist (N	ot app	licable fo	or Pitcher Sa	mpler)		
1) Was sampler									Yes / No
Comments:									
2) Was downwa	rd force pr	rovided throu	igh the drill r	ods us	ing the h	ydraulic drive	mecha	inism	Yes / No
on the drill rig? Comments: 750	nei dowr	proseuro							
3) Was the sam			or below th	e statio	: water ta	ble?			
•) •• •• •• ••	p.e .e		,						Above
Comments:							L		
4) Was water added to the borehole? Yes No									
Comments:									
5) Was sample driven? If yes, record weight and fall of the hammer in comments.									
Comments: 6) Was the witho	drawl of th	e sampler de	alaved a min	imum (of 5 minu	tes after nust	n?		Yes) No
Comments (reco		•	•	mum			1:		
7) Was the tube				al at the	end of t	he tube prior	to extra	action?	Yes) No
Comments (reco	ord numbe	er of rotations	or amount	of rotat	ion):				
		Samp	le Measure	ment,	Sealing	and Labeling	g		
Sampler Penent	ration (inc	hes):	24	Sampl	e Recove	ery (inches):	-	2	23
Sample Length I	Preserved	in Tube (afte	er bottom ~1	" remo	ved) (inc	hes):		22	
Sample Tube Ti								Undama	ged
Sample Descrip	tion: Red d	lish brown,	Silt, low pla	sticity					
				-					
									_
8) Were both en	ids of expo	osed soil sam	nple sealed?)					Yes/No
Comments (type									
9) Was packing				ample a	and ends	of tube?			Yes/No
Comments (type of material used): Sand									
10) Were both ends of tube capped and taped? Comments and type of capping: Red Plastic Cap								(Yes)/No	
	type of cal	pping. Reu P	iasut vap						
11) Was the tube									
depth interval, sar	nple recove	ery, date samp	ole was taken	? Was a	an arrow v	vith "TOP" labe	eled on t	the side of	the Yes No
sample?									

Supplemental Comments:

r									
Project:	Cherrystone Creek W	atershed Dam 2A	Boring ID:	Boring ID: B-751					
Location:	Chatham, VA		Sample ID:	UD-0'	1				
Schnabel Proj	ject No.: 22210031.1		By: PWA		Date:	1/9/2023			
	Pittsylvania County		Checked:	EU	Date:	3/28/2023			
Sampler advance	ed from6	feet below g	round surface to	8	_ feet bgs				
		Sampler In	formation						
Tube Material:	Galvanize	d Steel	Type of coating on Tu	ube:		Zinc			
Tube Diameter a	and Length (inches):	3"x30"	Condition of Tube Be	fore Us	e:	Good			
		Drilling In	formation						
Method of Drillin	ng: 3-1/4" Hollow	v Stem Auger	Type of Casing:		Non	e			
Diameter of Bor	ehole (inches):	7-1/4"	Drilling Fluid:		None				
		`	licable for Pitcher Sa	ampler)					
· · ·	advanced in one unifo	rm, continuous pu	sh without rotation?			Yes/No			
Comments:	rd force provided through	ah tha drill rada us	ing the hydroulie drive	maaha	niom				
on the drill rig?	rd force provided throu	gn the arill roas us	sing the hydraulic drive	mecna	anism	Yes / No			
-	psi down pressure								
	ple collected at, above,	or below the stati	c water table?			Dalam			
,	•					Below			
Comments:									
,	ded to the borehole?					Yes No			
Comments: 5) Was sample driven? If yes, record weight and fall of the hammer in comments.									
5) was sample driven? If yes, record weight and fail of the nammer in comments.									
	drawl of the sampler de	layed a minimum	of 5 minutes after pus	h?		Yes) No			
Comments (reco	ord rest time): 10 mins	-							
7) Was the tube	slowly rotated to shear	the material at the	e end of the tube prior	to extra	action?	Yes) No			
Comments (reco	ord number of rotations	or amount of rota	tion):						
	Samp	le Measurement,	Sealing and Labelin	g					
Sampler Penent	tration (inches):	24 Samp	le Recovery (inches):		1	2			
Sample Length	Preserved in Tube (afte	er bottom ~1" remo	oved) (inches):		11				
Sample Tube Ti	p Condition (undamage	ed, bent, nicked, c	rimped, etc):		Undamag	jed			
Sample Descrip	tion: Grayish bown, Sa	andy Silt with Gra	avel, 30% medium-gr	ained s	sand, cont	ains rock			
fragments									
8) Ware both on	nds of exposed soil sam	unle sealed?				Yes/ No			
· ·	-	ipie sealed :				Tes/110			
Comments (type of seal): Wax 9) Was packing material placed between sealed sample and ends of tube?									
Comments (type of material used): Sand									
10) Were both ends of tube capped and taped?									
Comments and	type of capping: Red P	lastic Cap							
depth interval, sar	and cap appropriately lab mple recovery, date samp								
sample?						_			
Supplemental C	omments:								

UNDISTURBED SAMPLING FIELD FORM

· · —	errystone Creek Waters	hed Dam 2A		Boring ID:			
Location: Ch	atham, VA			Sample ID:	UD-02	2	
Schnabel Project	No.: 22210031.1			By: PWA		Date:	1/9/2023
Client Name: Pit				Checked:	EU	Date:	3/28/2023
Sampler advanced	from12	_ feet below	ground su	urface to	_14	feet b	gs
		Sampler In	formatio	n			
Tube Material:	Galvanized Ste	el	Type of	coating on Tu	be:		Zinc
Tube Diameter and	Length (inches):	3"x30"	Conditio	n of Tube Bef	ore Us	e:	Good
		Drilling Inf	ormatio	า			
Method of Drilling:	3-1/4" Hollow Ster	n Auger	Type of	Casing:		Non	e
Diameter of Boreho	le (inches): 7-	-1/4"	Drilling F	Fluid:		None	
	Sampling Check				mpler)		
	vanced in one uniform, co	ontinuous pus	sh withou	t rotation?			(Yes)/No
Comments:	area provided through the	o drill rodo uo	ing the h	udraulia driva	maaha	niom	
on the drill rig?	orce provided through the	e anii roas us	ing the h	ydraulic drive	mecha	msm	Yes / No
Comments: 700 psi	down pressure						
	collected at, above, or be	elow the statio	c water ta	ble?			Deleur
,							Below
Comments: Water a							
4) Was water added	to the borehole?						Yes No
Comments:	en? If yes, record weight	and fall of th	o hamme	r in comment	<u> </u>		Yes (No
Comments:	ente in yes, record weight				э.		Tes No
	vl of the sampler delayed	l a minimum (of 5 minu	tes after push	1?		Yes) No
Comments (record				-			
,	wly rotated to shear the r			he tube prior	to extra	action?	Yes) No
Comments (record	number of rotations or ar	nount of rotat	tion):				
	Sample Me	easurement,	Sealing	and Labeling	J		
Sampler Penentrati	on (inches): 24	Samp	le Recove	ery (inches):		2	4
Sample Length Pres	served in Tube (after bot	tom ~1" remo	oved) (inc	hes):		23	
Sample Tube Tip C	ondition (undamaged, be	ent, nicked, cr	imped, e	tc):		Undamag	ged
	: Grayish bown, Sandy	Silt with Gra	avel, 30%	medium-gra	ained s	and, cont	ains rock
fragments							
8) Were both and a	of exposed soil sample s	ealed?					Yes/No
Comments (type of		ealeu					Tes/140
	terial placed between sea	aled sample a	and ends	of tube?			Yes)/ No
· · ·	material used): Sand						
10) Were both ends	s of tube capped and tape						Yes / No
Comments and type	e of capping: Red Plastic	с Сар					-
	cap appropriately labeled vertex and the sample was						
sample?							
Supplemental Com	ments:						

ROCK CORE BOX PHOTOGRAPHS

Boring B-51

DATE TAKEN: 01/18/2023 to 1/19/2023

Core C-01 to C-04, 72.60 to 92.6 feet

DATE TAKEN: 01/19/2023

Boring B-51

COMMENTS:

Core C-05, 92.6 to 97.6 feet

CHERRYSTONE CREEK WATERSHED DAM NO. 2A PITTSYLVANIA COUNTY PROJECT NO. 22210031.100

ROCK CORE PHOTO LOG

PAGE 1

©Schnabel Engineering 2023 All Rights Reserved

PHOTO 3

LOCATION:

COMMENTS:

DATE TAKEN: 01/23/2023

Boring B-652

Core C-01 to C-04, 37.6 to 54.1 feet

PHOTO 4

LOCATION:

DATE TAKEN: 01/24/2023

Boring B-652

COMMENTS:

Core C-05 to C-06, 54.1 to 62.6 feet

CHERRYSTONE CREEK WATERSHED DAM NO. 2A PITTSYLVANIA COUNTY PROJECT NO. 22210031.100

ROCK CORE PHOTO LOG

PAGE 2

©Schnabel Engineering 2023 All Rights Reserved

APPENDIX C

PIEZOMETER INSTALLATION SKETCHES AND DEVELOPMENT RECORDS

MONITORING WELL INSTALLATION SKETCH

Subcontract Elev of Top o Depth to Bot	Pittsylvania C or: <u>Co</u> of Open Riser	nnelly & Associ Pipe (Referenc om Top of Ope	e EI. for water level measurements n Riser Pipe (ft):	-62.90
Horizontal Lo Elevation (ft, M.S.L.)		Northing: ight (ft) from: Ground Surface	<u>3,469,255.97</u> Ea	asting: <u>11,210,018.59</u>
709.0	0.1	0.0	✓ Type of Flush ✓ Mount Box	Steel Flush Mount
708.9 707.5	<u>0.0</u> -1.4	<u>-0.1</u> -1.5	Type of Surface Seal	Concrete Cement-bentonite grout
		_	→ Diameter of Borehole I.D. of Riser Pipe Riser Pipe Material	8-1/4 inch 2 inch Schedule 40 PVC
<u>659.1</u> <u>657.1</u> 656.1	<u>-49.7</u> <u>-51.7</u> -52.7	<u>-49.8</u> <u>-51.8</u> -52.8	Type of Seal	3/8" Bentonite Chips
			Size of Filter Sand	Sand and Gravel 2 inch 0.010 inch
			Screen Opening	

MONITORING WELL INSTALLATION SKETCH

-	Cherrystone Cre	ek Watershed	Dam 2A	Piezometer ID:	B-651
Location: <u>(</u>			00040004	Date of Installation:	1/11/2023
Schnabel Pr	-	<u></u>	22210031.1	By: PWA	Date: 1/11/2023
	: Pittsylvania C			Checked: ARS	Date: 3/27/2023
Subcontract	(or: (Connelley & As	ssociates	Station:	Offset:
Elev of Top	of Open Riser	Pipe (Referen	nce El. for wate	er level measurements,ft): 679.01
Depth to Bo	ttom of Well fr	om Top of Op	oen Riser Pipe	(ft):	-43.00
Horizontal L	ocation (ft):	Northing:	3,469,250.79	East	ting: <u>11,210,097.06</u>
Elevation	Depth or He	ight (ft) from:	:		
(ft, M.S.L.)	Top of	Ground	_		
	Open Riser	Surface			
		• •	,	e of Flush	
679.2	0.2	0.0	¥ Mou —	int Box	Steel Flush Mount
679.0	0.0	-0.2		Type of Surface Seal	Concrete
677.7	-1.3	-1.5			
				Type of Backfill	Cement-bentonite grout
		-	} ₊	Diameter of Borehole	8-1/4 inch
				_I.D. of Riser Pipe	2 inch
				Riser Pipe Material	Schedule 40 PVC
644.0	-34.8	-35.0			
642.0	-36.8	-37.0		Type of Seal	3/8" Bentonite Chips
641.0	-37.8	-38.0			
				– Size of Filter Sand	Sand and Gravel
				–I.D. of Screen	2 inch
				Screen Opening	0.010 inch
636.2	-42.8	-43.0		Screen Material	Schedule 40 PVC
636.0	-43.0	-43.2	∐	Slot Type	Machine Slotted
635.2	-43.8	-44.0			Diagram Not to Scale
Comments: Be	entonite chips pla	ced to create se	eal from bottom o	of boring at 48ft up to 44 ft. S	ilty material buildup at bottom

Comments: Bentonite chips placed to create seal from bottom of boring at 48ft up to 44 ft. Silty material buildup at bottom of piezometer from 40.8 to 43 feet (observed with optical scope on 3/28/2023).

MONITORING WELL DEVELOPMENT FIELD FORM

٦

Project:	Cherrystone	Creek Watershed Dam	2A Well ID:	B-51A	
Location:	Chatham, VA		Date(s):	3/4/2023	
Schnabel Project	No.:	22210031.1	Time Started: 2:30 PM	Time Ended:	6:00 PM
Client Name:	Pittsylvania	County	Weather Conditions:	Cloudy/Rainy, 6	60s
Field Personnel:	PWA		Checked By: ARS	Date:	3/28/2023

Water Level measured from TOC (d_{swi} , feet):	53.4	Riser Pipe Diameter (r _c , inches):	2
Well Depth measured from TOC (d _w , feet):	63	Well Volume (gal) V=0.041 $(r_c)^2 (d_w-d_{swl})$:	2.97
Screened Interval from TOC (feet):	52.8-62.8	Note: TOC = Top of Open Riser Pipe	

Comments on Well Condition (riser pipe type, outer casing, lock, etc):

PVC riser, 5' screen, developed with stick up but cut below ground surface before installing and closing well cover.

		Purge l	Information			
Purging Method:	Stainless St	teel Bailer	Peristalic Pump	Grundfos Pu	ımpXBail	er
(put an X by one)	Polyethylen	e Bailer	_Bladder Pump	DC Pump	_Other:	
Purge Equipment/Serial No:		Whale Pun	np			
Monitoring Instrument(s)/Serial	No:	Not needed	d			
Purge Flow Rate (gpm):	Variable		Well Purged D)ry (circle one):	Yes	or No
5	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6
Date	3/4/2023					
Time (of day, hr:min)	2:30 PM					
Volume Purged (Gal): Cumulative or <u>Per Test</u> (circle						
one)	35 gal					
Water Level (ft from TOC) After Purging	53					
Temperature (°C)	NR					
pH (s.u.)	NR					
Conductivity (µS/cm)	NR					
Turbidity (NTU)	NR					
Sheen/Color	Brown					
Odor	NR					
Note: Fill in columns as approp	riate based on	project requ	uirements. NR = N	ot Recorded; NA	A = Not Applica	able.
Comments:						

MONITORING WELL DEVELOPMENT FIELD FORM

1

Project:	Cherrystone	Creek Watershed Dam	n 2A Well ID:	B-651	
Location:	Chatham, VA		Date(s):	3/4/2023	
Schnabel Project	No.:	22210031.1	Time Started: 2:30 PM	Time Ended:	6:00 PM
Client Name:	Pittsylvania C	county	Weather Conditions:	Cloudy/Rainy, 6	60s
Field Personnel:	PWA		Checked By: ARS	Date:	3/28/2023
					0/20/202

Water Level measured from TOC (d_{swi} , feet):	34	Riser Pipe Diameter (r _c , inches):	2
Well Depth measured from TOC (d _w , feet):	43.2	Well Volume (gal) V=0.041 $(r_c)^2 (d_w-d_{swl})$:	1.5
Screened Interval from TOC (feet):	38-43	Note: TOC = Top of Open Riser Pipe	

Comments on Well Condition (riser pipe type, outer casing, lock, etc):

PVC riser, 5' screen, developed with stick up but cut below ground surface before installing and closing well cover.

		Purge I	nformation			
Purging Method:	Stainless St	eel Bailer	Peristalic Pump	Grundfos Pur	mpX Baile	er
(put an X by one)	Polyethylen	e Bailer	_Bladder Pump	_DC Pump	Other:	
Purge Equipment/Serial No:		Whale Purr	ıp			
Monitoring Instrument(s)/Serial	No:	Not needed	l			
Purge Flow Rate (gpm):	Variable		Well Purged D	ry (circle one):	Yes o	or No
Test Information	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6
Date	3/4/2023					
Time (of day, hr:min)	3:30 PM					
Volume Purged (Gal): Cumulative or <u>Per Test</u> (circle one)	20 gal					
Vater Level (ft from TOC) After Purging	34					
Temperature (°C)	NR					
oH (s.u.)	NR					
Conductivity (µS/cm)	NR					
Turbidity (NTU)	NR					
Sheen/Color	Brown					
Odor	NR					
Note: Fill in columns as appropr	riate based on	project requ	irements. NR = Nc	ot Recorded; NA	= Not Applica	able.
			p at bottom of piez			

(observed with optical scope on 3/28/2023).

APPENDIX D RESULTS OF HYDRAULIC CONDUCTIVITY TESTING IN SOIL

Soil Hydraulic Conductivity Test Methods Soil Hydraulic Conductivity Test Results

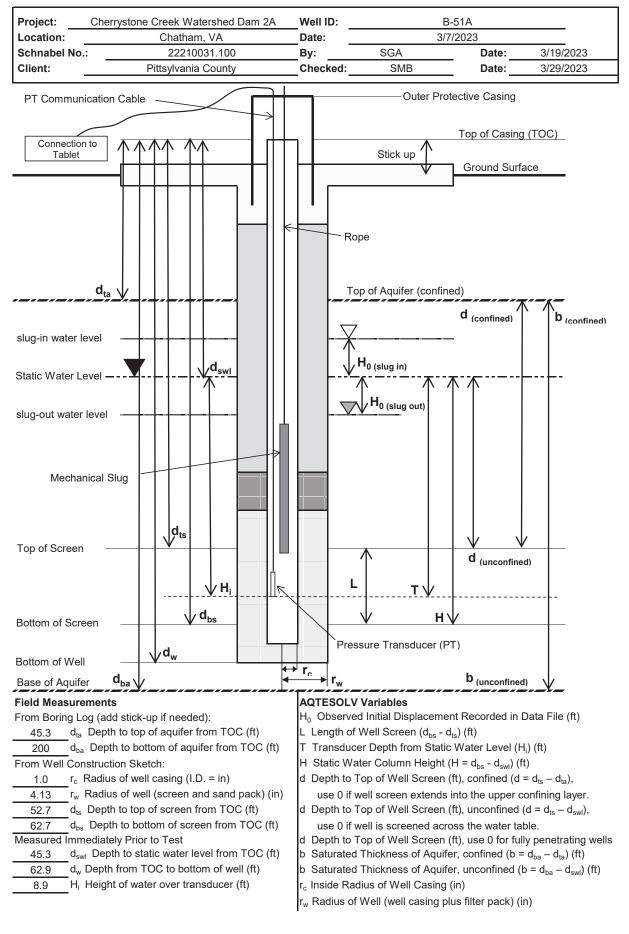
HYDRAULIC CONDUCTIVITY (SLUG) TESTING IN SOIL

Brief Description of the Soil Hydraulic Conductivity Test Methods

Hydraulic conductivity tests of soil were performed in piezometers using the slug test method by Schnabel personnel. The test equipment included an In-situ Level TROLL 700 transducer, wireless TROLL communication datalogger, with the computer software Win situ 5 for data monitoring, a two-foot-long, 1-inch-diameter stainless steel slug, and a 100-foot long Rugged Poly Cable. Each piezometer was developed prior to slug testing using a Whale high flow pump and graduated 5-gallon bucket for measurement of purged well volumes. Prior to each test, the static water level and total depth of the piezometer were measured.

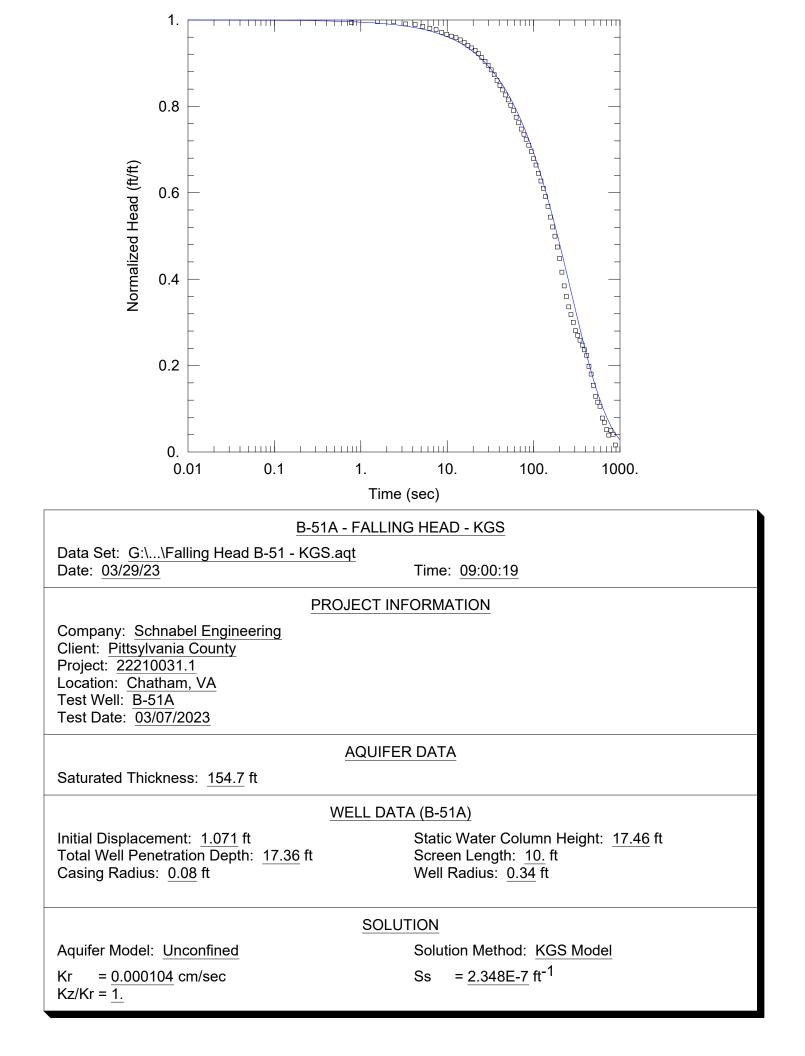
For piezometers with water levels above the screened interval, rising and falling head hydraulic conductivity tests were performed using the slug-in and slug-out test method. Falling head tests were performed on piezometers with water levels within the screened interval prior to the test.

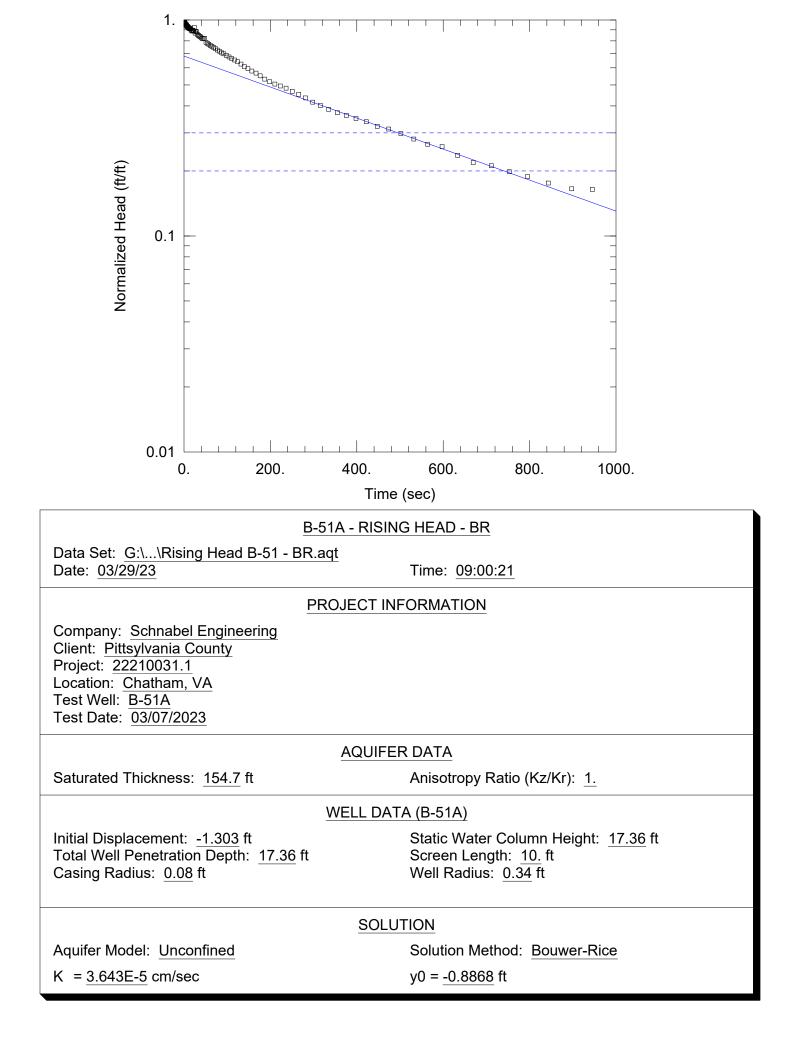
Test data was evaluated using the software program Aqtesolv Pro (Version 4.5). Two analytical methods were applied in evaluating test results, the Bouwer and Rice Method (Bouwer and Rice, 1976; Bouwer, 1989a, 1989b) and the KGS Model (Hyder et al., 1994). The Bouwer and Rice Method was considered when the data did not fit well with the KGS Model.

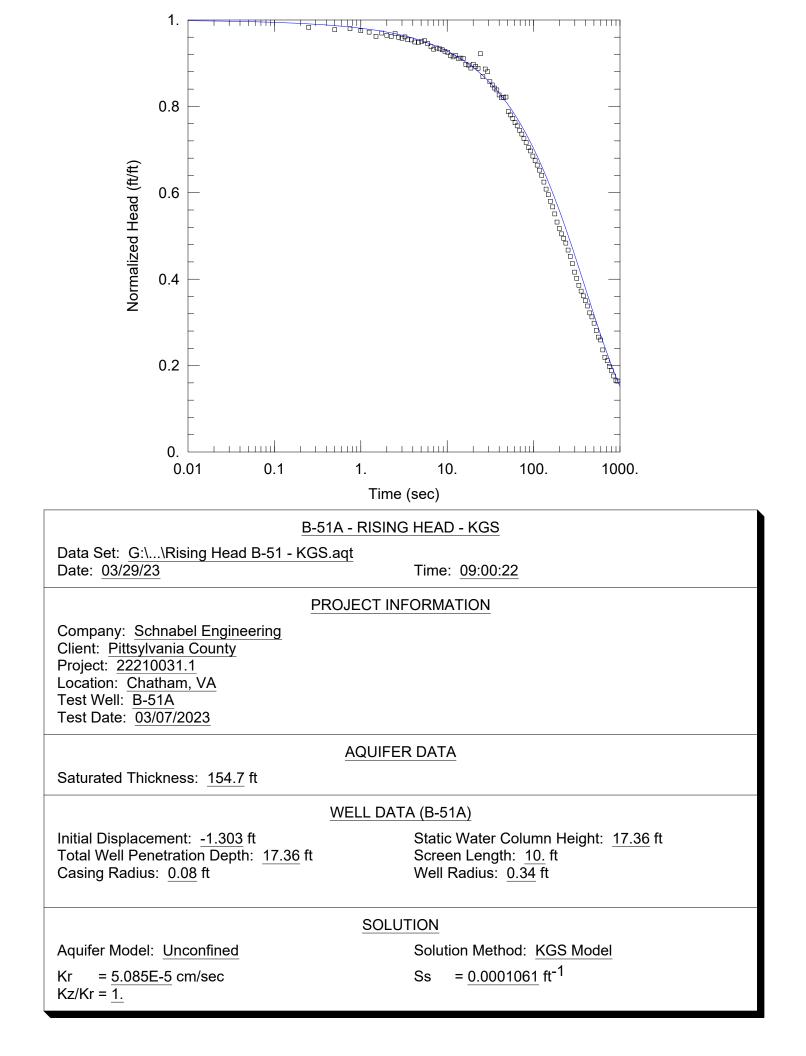

Soil Hydraulic Conductivity Test Results

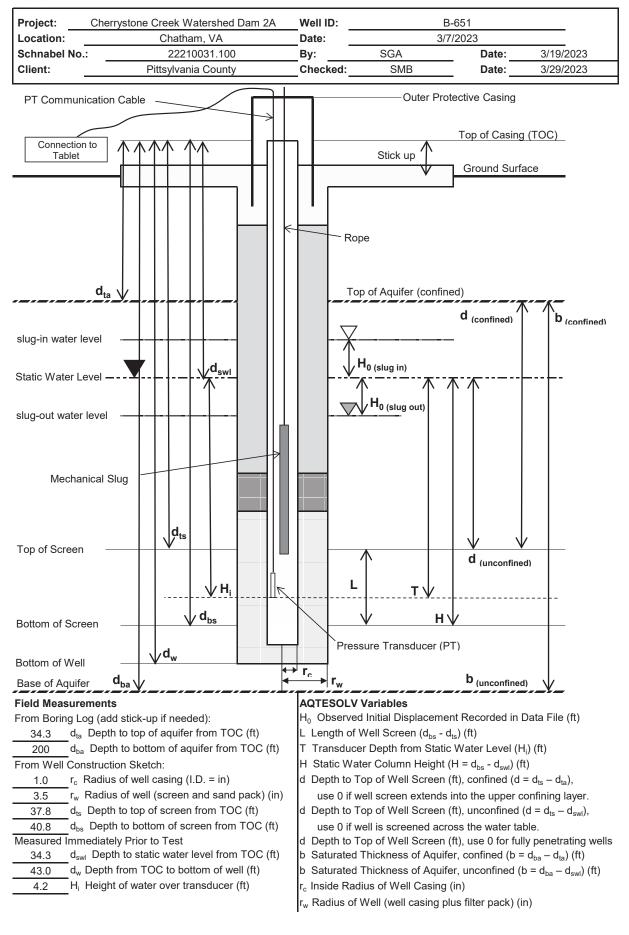
Calculated hydraulic conductivities for in situ soil using the Bouwer and Rice Method and KGS Model for the tested piezometers are presented in Table 3. Aqtesolv data analyses output sheets are included in this appendix.

This testing is only an approximation of the in situ hydraulic conductivity at selected locations and variations are to be expected.

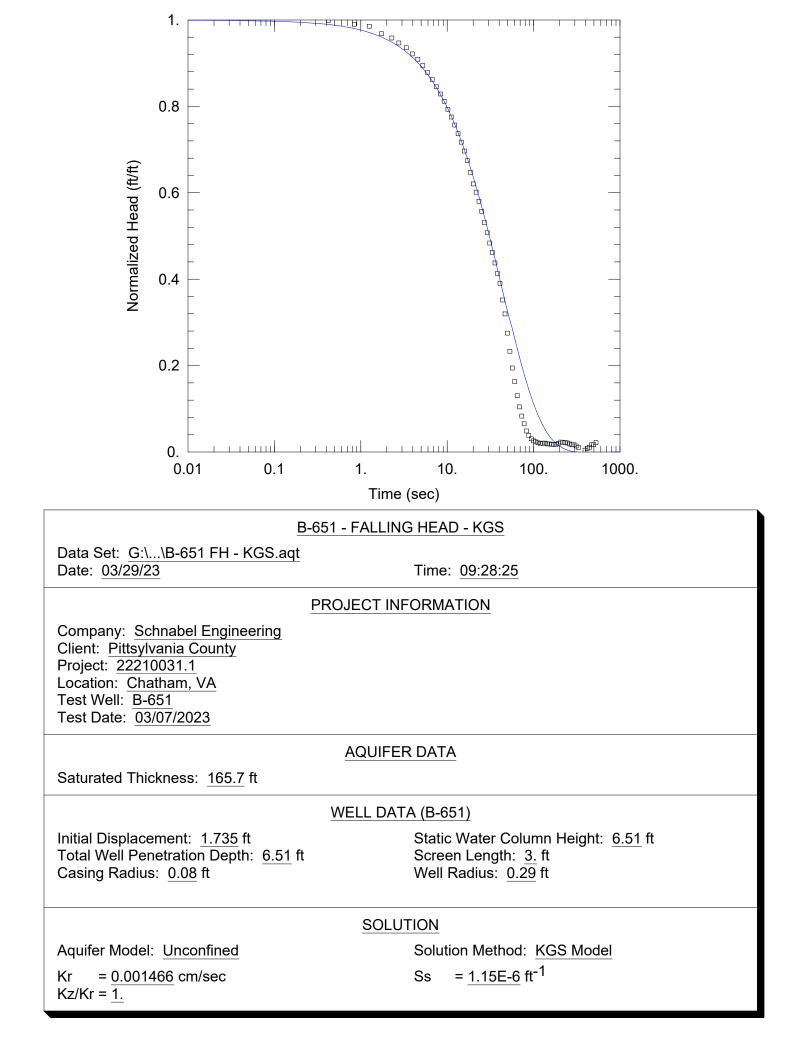

WELL DIMENSIONS AND INPUT DATA FOR HYDRAULIC CONDUCTIVITY (SLUG TESTS)


Project:	Cherrystone Creek Watershed D	am 2A	Well ID:		B-51A	
Location:	Chatham, VA		Date of Test:		3/7/2023	
Schnabel No.:	22210031.100		Test Type (circle	one) Falling He	ead Test or	Rising Head Test
Client:	Pittsylvania County		By:	SGA	Date:	3/19/2023
			Checked:	SMB	Date:	3/29/2023
Well Construction De	tails (obtain data from	n boring logs and w	vell installation sketc	h)		
Depth Reference (De All depths listed be	pth = 0.00 ft) <u>from Top of Cas</u> elow should be measured from the same		pically the top of the	open casing (TC	DC).	
Depth to Top of Scree	en from TOC (d _{ts}): 52.7 ft	Well Casing Rad	lius (r _c):	1.0 in	0.08	ft
Depth to Bottom of S	creen from TOC (d _{bs}): 62.7 ft	Well Screen Rad	dius (r _w):	4.1 in	0.34	ft
Screen Length (L):	10 ft	Depth to Top of	Aquifer from TOC (c	l _{ta}): 45	5.3 ft	
Depth to Static Water	r Level from TOC (d _{swi}): 45.3 ft	Depth to Bottom	of Aquifer from TOO	C (d _{ba}): 20	00 ft	
Initial head on pressu	ire transducer (H _i) 8.9 ft	(as read from da	talogger prior to tes	ting)		
	or Unconfined (enter "c" or "u"): Fully Penetrating (enter "p" or "f"):	U P		CONFINED RTIALLY		
General						
Observed Initial Dis	splacement Recorded in Data File (H_0)	<u> </u>	(Change in water l			
Statia Water Calum	valleight (L)	17.4 ft	datalogger file. Val	ue is negative for	r rising head (slug out) test).
Static Water Colum Well Coordinates		de / Northing	H = d _{bs} - d _{swl} (optional for a sing	le slug test analy	sis or when	
Weil Coordinates		tude / Easting	installation sketch		313 OF WHEN	
Aquifer Data						
Saturated Thicknes	ss of Aquifer (b):	ft	for a confined aqui	fer (d _{ba} -d _{ta})		
		154.7 ft	for an unconfined a	aquifer (d _{ba} -d _{swl})		
Hydraulic Conductiv	vity Anisotropy Ratio (K _v /K _h):		(use 1, unless deta	ailed information i	is available)	
Construction						
Depth to Top of We	ell Screen (d)	ft	depth from bottom			1 (10 (1)
			(input 0 if well scre			
		<u>7.4</u> ft	depth from top of v (input 0 if well is so			
Length of Well Scre	en (I)	10 ft	d _{bs} -d _{ts})
	from Static Water Level (T)	8.9 ft				
Radius Data			- 1			
Inside Radius of W	ell Casing (r.)	0.08 ft	assume well scree	n = r		
Radius of Downhole	0 (0)	ft	assume 0.0 ft for p	0	er and slug a	lone
Inside Radius of Pa			use 0.0 ft if packer		for and oldg a	
Radius of Well (r _w)		0.34 ft	well casing plus filt			
Outer Radius of We	ell Skin (r _{sk})		assume r _{sk} = r _w un			
Well Corrections						
	lied for effective casing radius?	Yes No				
If so, Method:	-		:	H(0)*:		
Was correction app	lied for frictional well log?	Yes No				
lf so,	Kinematic viscosity:m ² /se	ec	Gravitational acce	leration:	m/sec ²	
Comments:						



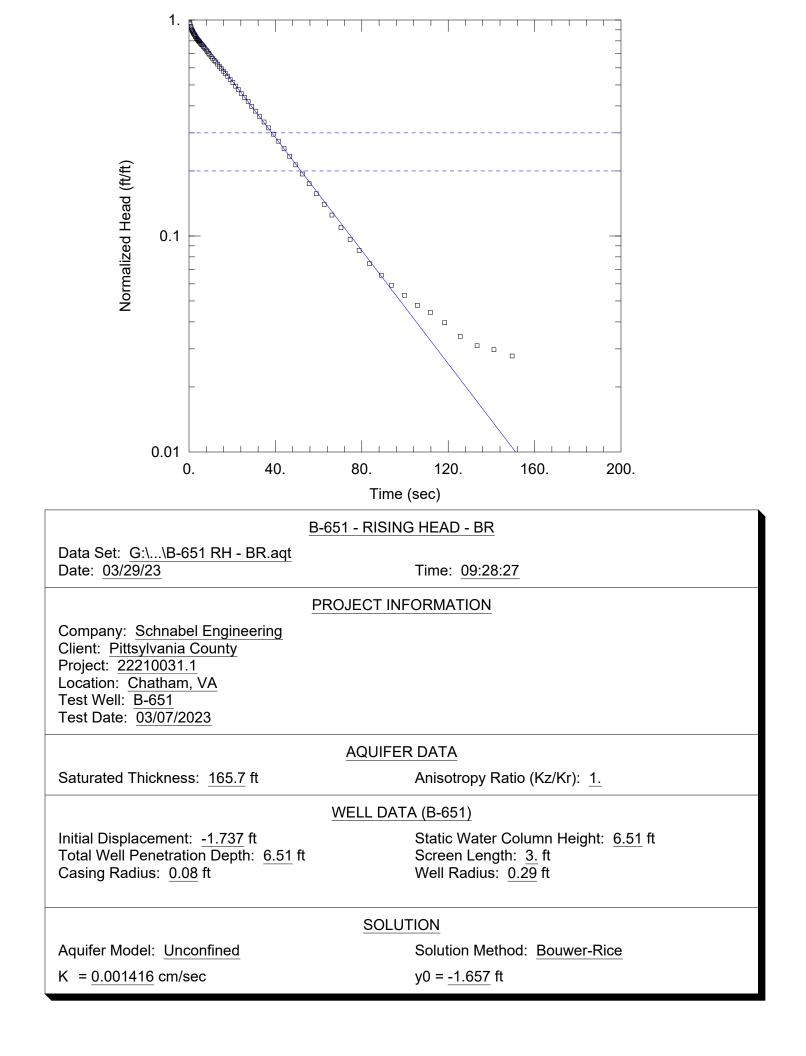

Project:	Cherrystone Creek Watershed E	Dam 2A	Well ID:		B-51A	
Location:	Chatham, VA		Date of Test:		3/7/2023	
Schnabel No.:	22210031.100		Test Type (circle	one): Falling He	ad Test or 🤇	Rising Head Test
Client:	Pittsylvania County		By:	SGA	Date:	3/19/2023
			Checked:	SMB	Date:	3/29/2023
Well Construction De	tails (obtain data from	n boring logs and v	vell installation sketc	:h)		
Depth Reference (De All depths listed b	epth = 0.00 ft) <u>from Top of Cas</u> elow should be measured from the same		pically the top of the	e open casing (TO	IC).	
Depth to Top of Scre	en from TOC (d _{ts}): 52.7 ft	Well Casing Rad	lius (r _c):	1.0 in	0.08 ft	t
Depth to Bottom of S	creen from TOC (d _{bs}): 62.7 ft	Well Screen Rad	dius (r _w):	4.1 in	0.34 ft	t
Screen Length (L):	10 ft	Depth to Top of	Aquifer from TOC (c	l _{ta}): 45.	.3 ft	
Depth to Static Wate	r Level from TOC (d _{swl}): 45.3 ft	Depth to Bottom	of Aquifer from TOO	C (d _{ba}): 20	0 ft	
Initial head on pressu	ire transducer (H _i) 8.9 ft	(as read from da	talogger prior to tes	ting)		
	or Unconfined (enter "c" or "u"): Fully Penetrating (enter "p" or "f"):	U P		ICONFINED RTIALLY		
General						
Observed Initial Dis	splacement Recorded in Data File (H_0)	-1.3 ft	(Change in water l			
		17.1.5	datalogger file. Val	ue is negative for	rising head (sl	lug out) test).
Static Water Colum Well Coordinates		17.4 ft ude / Northing	H = d _{bs} - d _{swl} (optional for a sing	lo alua toat analua		
Well Coordinates		itude / Easting	installation sketch		SIS OF WHEN	
Aquifer Data		0		,		
Saturated Thicknes	ss of Aquifer (b):	ft	for a confined aqui	fer (d _{ba} -d _{ta})		
		154.7 ft	for an unconfined a	aquifer (d _{ba} -d _{swi})		
Hydraulic Conductiv	vity Anisotropy Ratio (K _v /K _h):		(use 1, unless deta	ailed information is	s available)	
Construction						
Depth to Top of We	ell Screen (d)	ft	depth from bottom	of confining layer	for a confined	aquifer (d _{ts} -d _{ta})
			(input 0 if well scre			
		7.4 ft	depth from top of v			uifer (d _{ts} -d _{swl})
Length of Well Scre	pop (I)	10 ft	(input 0 if well is so d _{bs} -d _{ts}	creened across the	e water table)	
ě l	from Static Water Level (T)	8.9 ft	H _i			
		<u> </u>	11			
Radius Data Inside Radius of W	ell Casing (r.)	0.08 ft	assume well scree	n = r		
Radius of Downhol		ft	assume 0.0 ft for p	-	or and slug alo	20
Inside Radius of Pa	1 1 (04/	ft	use 0.0 ft if packer		er and slug alo	
Radius of Well (r _w)		0.34 ft	well casing plus filt			
Outer Radius of We	ell Skin (r _{sk})		assume r _{sk} = r _w un	•		
Well Corrections						
	blied for effective casing radius?	Yes No				
If so, Method:	5 -		:	H(0)*:	_	
Was correction app	blied for frictional well log?	Yes No				
If so,	Kinematic viscosity:m ² /se	ec	Gravitational acce	leration:	m/sec ²	
Comments:						

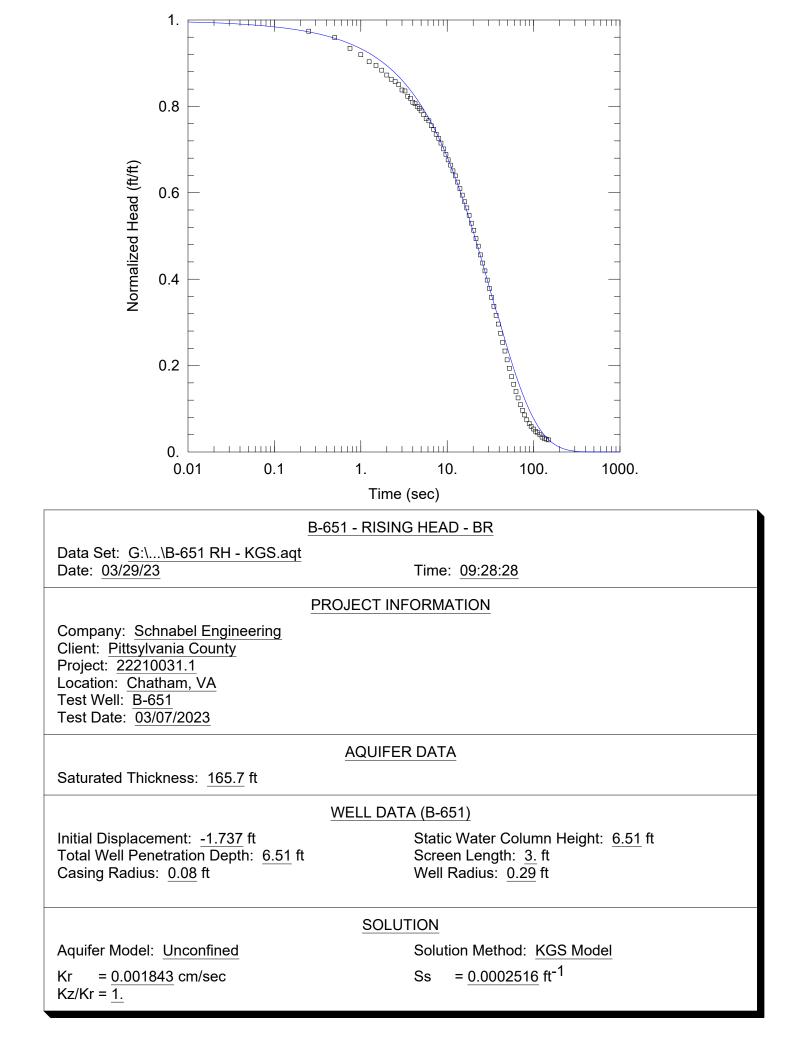

WELL DIMENSIONS AND INPUT DATA FOR HYDRAULIC CONDUCTIVITY (SLUG TESTS)



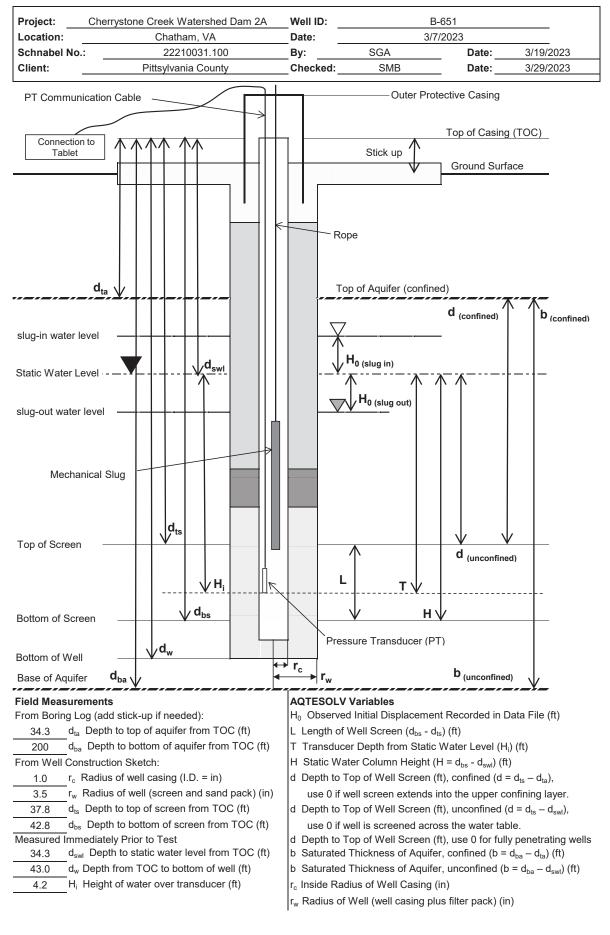
٦

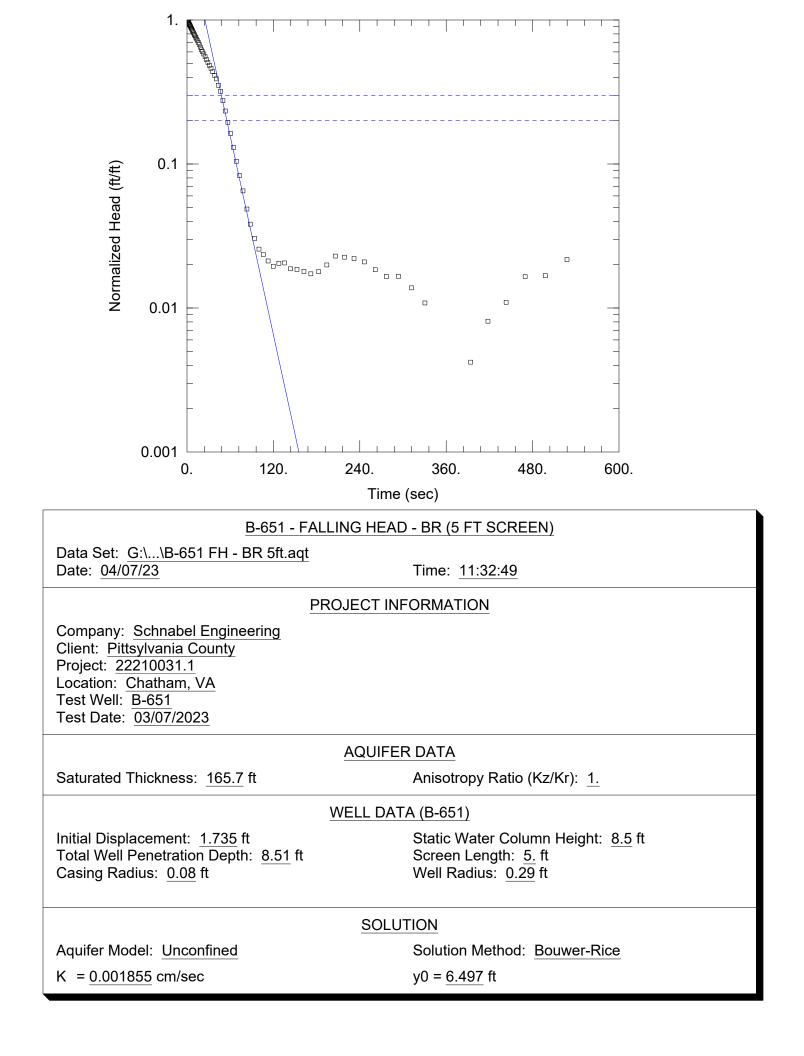
Project: Cherrystone Creek Wate	ershed Dam 2A	Well ID:		B-651
Location: Chatham, V	/A	Date of Test:		3/7/2023
Schnabel No.: 22210031.1	00	Test Type (circle	one) Falling Hea	ad Test or Rising Head Test
Client: Pittsylvania Co	ounty	By:	SGA	Date: 3/19/2023
		Checked:	SMB	Date: 3/29/2023
Well Construction Details (obtain o	lata from boring logs and	well installation sketc	h)	
Depth Reference (Depth = 0.00 ft) from Top	p of Casing (TOC)			
All depths listed below should be measured from the		typically the top of the	open casing (TO	C).
Depth to Top of Screen from TOC (d _{ts}): 37	.8 ft Well Casing Ra	adius (r.).	1.0 in	0.1 ft
	.8 ft Well Screen Ra	· · ·	3.5 in	0.3 ft
Screen Length (L):		f Aquifer from TOC (d		9 ft
		n of Aquifer from TO		0 ft
		latalogger prior to test	(50)	<u> </u>
Is Aquifer Confined or Unconfined (enter "c" or "u"):	U	LIN	CONFINED	
Is Well Partially of Fully Penetrating (enter "p" or "f")			RTIALLY	
General				
Observed Initial Displacement Recorded in Data File	e (H ₀) 1.7 ft	(Change in water le	evel from static, us	se exact number from
	<u> </u>	datalogger file. Val	ue is negative for	rising head (slug out) test).
Static Water Column Height (H)	6.5 ft	50 011		
Well Coordinates	Latitude / Northing	(optional for a sing		is or when
	Longitude / Easting	installation sketch	is not attached)	
Aquifer Data		6	5	
Saturated Thickness of Aquifer (b):		for a confined aqui		
Hydraulic Conductivity Anisotropy Ratio (K _v /K _b):	<u>165.7</u> ft	for an unconfined a (use 1, unless deta		available)
		(use 1, unless deta	lied mormation is	avaliable)
Construction			- f f ining - 1	for a confined constant (d. d.)
Depth to Top of Well Screen (d)	ft			for a confined aquifer (d _{ts} -d _{ta}) nto the upper confining layer)
	3.5 ft	· ·		Inconfined aquifer (d _{ts} -d _{swl})
	0.0 1	(input 0 if well is so		
Length of Well Screen (L)	3 ft	d _{bs} -d _{ts}		,
Transducer Depth from Static Water Level (T)	4.2 ft			
Radius Data				
Inside Radius of Well Casing (r _c)	0.08 ft	assume well scree	$n = r_c$	
Radius of Downhole Equipment (r _{eg})		assume 0.0 ft for p	0	er and slug alone
Inside Radius of Packer (r_p)	ft			5
Radius of Well (r _w)	0.29 ft			
Outer Radius of Well Skin (r _{sk})	0.29 ft	assume r _{sk} = r _w un		
Well Corrections				
Was correction applied for effective casing radius?	Yes No			
If so, Method:	n(e	e):	H(0)*:	_
Was correction applied for frictional well log?	Yes No			
If so, Kinematic viscosity:	m²/sec	Gravitational acce	leration:	m/sec ²
Comments: Silty material buildup at bottom o	f piezometer from 43.0 to	40.8 feet.		

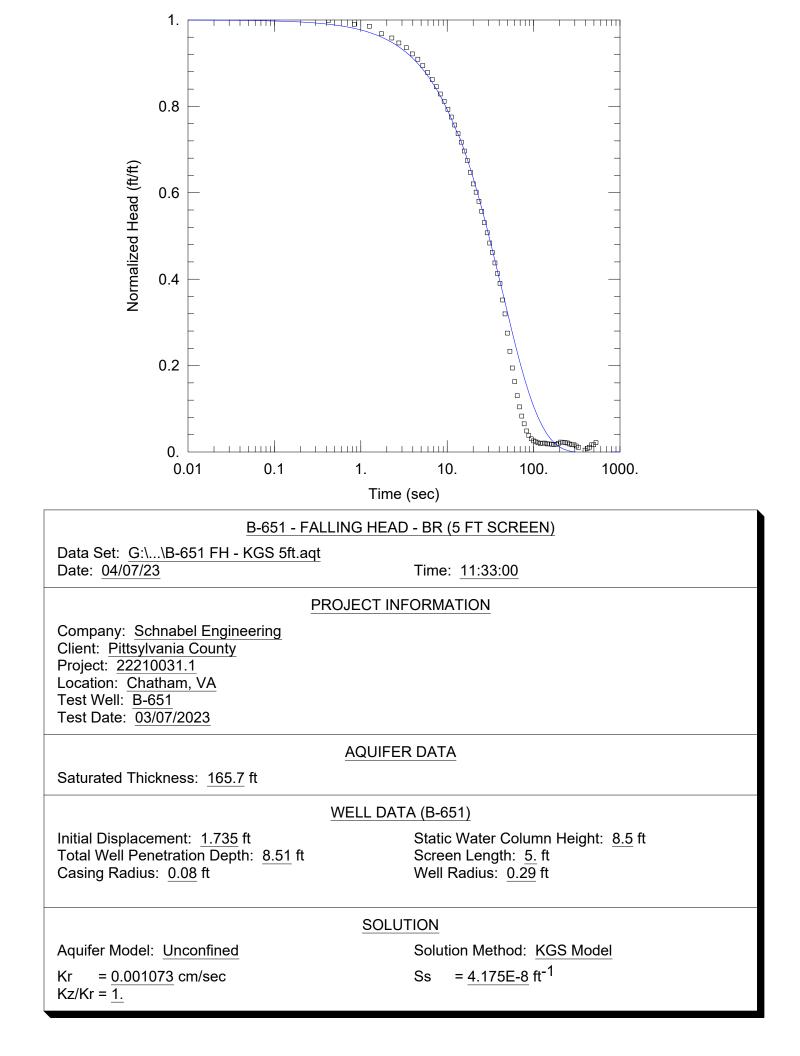




٦

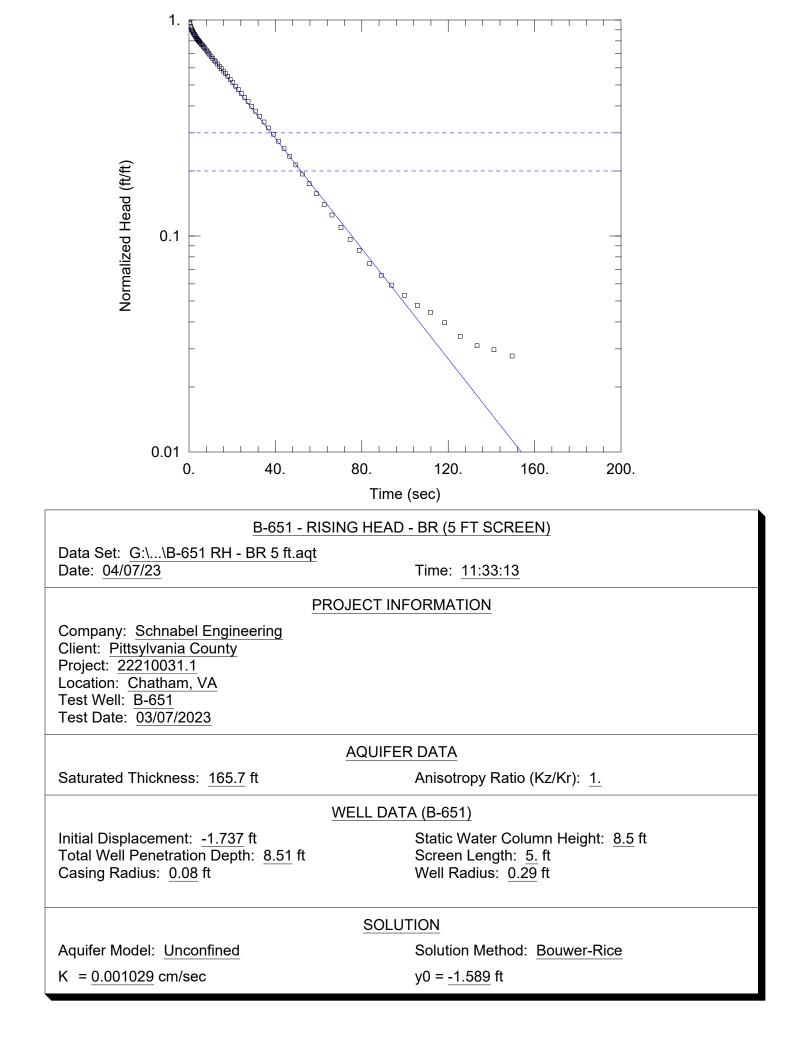

Location:: Charbam, VA Date of fest: 37/2023 Schmabel No:: 22210031.000 Test Type (circle one): Falling Head Test or (#Sing Head Test) Depth Reference (Deph = 0.01f) from Top of Casing (TOC). SMB Date: 37/2023 Wall Construction Datalis (obtain data from boring logs and well installation sketch) Deepth Reference (Deph = 0.01f) Test Type (arcicle one): Falling Head Test or (MSing Head Test or	Project:	Cherrystone Creek Watershed E	0am 2A	Well ID:		B-651		
Client: Pittsylvania County By: SGA Date: 3/19/2023 Well Construction Details (obtain data from boring logs and well installation sketch) Date: 3/20/2023 Well Construction Details (obtain data from boring logs and well installation sketch) Date: 3/20/2023 Depth Reference (Depth = 0.00 ft) from Top of Casing (TOC) All depths listed bolow should be measured from the same reference point, typically the top of the open casing (TOC). Depth to Top of Screen from TOC (d _a): 37.8 ft Well Casing Radius (r _a): 3.6 in 0.3 ft Depth to Top of Screen from TOC (d _a): 37.8 ft Depth to Top of Aquifer from TOC (d _a): 34.3 ft Depth to Top of Aquifer from TOC (d _a): 34.3 ft Depth to Top of Casing (TOC) 44.2 ft (as read from datalogger prior to testing) INTERCONCOLUME 10 in 0.3 ft Is well Parating (enter "p" or "t"): U UNCONFINED Vent Vent Vent Vent Vent Vent Vent Vent	Location:			Date of Test:	3/7/2023			
Checked: SMB Date: 3/29/2023 Well Construction Details (obtain data from boring logs and well installation sketch) form Top of Casing (TOC). Depth Reference (Depth = 0.00 ft) from Top of Casing (TOC). 10 ft 0.1 ft Depth to Top of Screen from TOC (d _w): 37.8 ft Well Casing Radius (r_c): 1.0 in 0.1 ft Depth to Top of Screen from TOC (d _w): 37.8 ft Well Casing Radius (r_c): 1.0 in 0.1 ft Depth to Static Water Level from TOC (d _w): 37.8 ft Well Casing Radius (r_c): 1.0 in 0.1 ft Initial nead on pressure transducer (H) 42.8 ft Depth to Top of Aquifer from TOC (d _w): 200 ft Is Aquifer Confined or Unconfined (enter to* or "u"): U UNCONFINED 200 ft Is Aquifer Confined or Unconfined (enter to* or "u"): U UNCONFINED 200 ft Static Water Column Height (H) 6.5 ft H = d _{bax} = d _{aat} (optional for a single slug test analysis or when installaton sketch is not attached) Saturated Thickness of Aquifer (b): ft ft for a confined aquifer (d _{bax} -d _{ba}) for a confined aquifer (d _{bax} -d _{ba}) Hydraulic Conductivity Anisotropy Ratio (K,K _b): ft for a confined aquifer (d _{bax} -d _{ba}) fopun	Schnabel No.:	22210031.100		Test Type (circle	one): Falling Hea	d Test or Ris	ing Head Test	
Well Construction Details (obtain data from boring logs and well installation sketch) Depth Reference (Depth = 0.00 ft) from Top of Casing (TOC) All depths listed below should be measured from the same reference point. typically the top of the open casing (TOC). 0.1 ft Depth to Top of Screen from TOC (d _{ub}): $\frac{37.8 \text{ ft}}{40.8 \text{ ft}}$ Well Casing Radius (r _a): $\frac{3.5 \text{ in}}{0.3 \text{ ft}}$ 0.3 ft Depth to Stote from TOC (d _{ub}): $\frac{37.8 \text{ ft}}{43.3 \text{ ft}}$ Depth to Top of Aquifer from TOC (d _{ub}): $\frac{34.3 \text{ ft}}{200 \text{ ft}}$ Initial head on pressure transducer (H) $\frac{42.2 \text{ ft}}{42.2 \text{ ft}}$ (as read from datalogger prior to testing) UNCONFINED Is Aquifer Confined or Unconfined (enter "o" o""): U UNCONFINED UNCONFINED Static Water Level from TOC (d _{ub}): $\frac{5.5 \text{ ft}}{10.0 \text{ ft}} + d_{a_0} - d_{out}$ (optional for a single slug test analysis or when installation sketch is not attached) Aquifer Confined on Height (H) 6.5 ft for a confined aquifer (d _{ub} -d _{ub}) Hydraulic Conductivity Anisotropy Ratio (K,/K_u): (165.7 ft) for a a confined aquifer (d _{ub} -d _{ub}) Hydraulic Conductivity Anisotropy Ratio (K,/K_u): $1.65.7 \text{ ft}$ for a nuconfined aquifer (d _{ub} -d _{ub}) Construction ft depth from botom of confining layer for a confined aquifer (d _u	Client:	Pittsylvania County		By:	SGA	Date:	3/19/2023	
Depth Reference (Depth = 0.00 ft) from Top of Casing (TCC) All depths listed below should be measured from the same reference point, typically the top of the open casing (TOC). Depth to Top of Screen from TOC (d _w): 37.8 ft Uell Casing Radius (r _w): 1.0 in 0.1 ft Screen Length (L): 0.1 ft Depth to Top of Aquifer from TOC (d _w): 34.3 ft Depth to Top of Aquifer from TOC (d _w): 34.3 ft Depth to Top of Aquifer from TOC (d _w): 200 ft (as read from datalogger prior to testing) Is well Paritally of Fully Penetrating (enter "c" or "t"): U P PARTIALLY General Observed Initial Displacement Recorded in Data File (H ₀) Static Water Level from TOC (d _w): Static Water Column Height (H) Well Coordinates Latitude / Northing Latitude / Northing Multic Conductivity Anisotropy Ratio (K,K ₀): Construction Depth to Top of Well Screen (d) Transducer Depth from Static Water Level (T) Static Water Column Height (H, Hydraulic Conductivity Anisotropy Ratio (K,K ₀): Construction Depth to Top of Well Screen (L) Transducer Depth from Static Water Level (T) Radius of Well Screen (L) Transducer Depth from Static Water Level (T) Radius of Well Screen (L) Transducer Depth from Static Water Level (T) Radius of Well Casing (r ₀) Radius of Well C	-			Checked:	SMB	Date:	3/29/2023	
All depths listed below should be measured from the same reference point, typically the top of the open casing (TOC). Depth to Top of Screen from TOC (d _{ua}): 37.8 ft Depth to Bottom of Screen from TOC (d _{ua}): 34.3 ft Depth to Static Water Level from TOC (d _{ua}): 34.3 ft Depth to Static Water Level from TOC (d _{ua}): 34.3 ft Depth to Static Water Level from TOC (d _{ua}): 34.3 ft Depth to Static Water Level from TOC (d _{ua}): 34.3 ft Depth to Static Water Level from TOC (d _{ua}): 34.3 ft Depth to Static Water Level from TOC (d _{ua}): 34.3 ft Depth to Static Water Level from TOC (d _{ua}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{ua}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{ua}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{ua}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{ua}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{ua}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{ua}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{ua}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{ua}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{ua}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{ua}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{ua}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{ua}): 34.3 ft Depth to Static Water Column Height (H) Well Coordinates Latitude / Northing Aquifer Data Saturated Thickness of Aquifer (b): ft ft ft ft ft ft ft ft ft ft	Well Construction Deta	ails (obtain data fror	n boring logs and v	well installation sketc	h)			
All depths listed below should be measured from the same reference point, typically the top of the open casing (TOC). Depth to Top of Screen from TOC (d _{u0}): 37.8 ft Depth to Bottom of Screen from TOC (d _{u0}): 34.3 ft Depth to Static Water Level from TOC (d _{u0}): 34.3 ft Depth to Static Water Level from TOC (d _{u0}): 34.3 ft Depth to Static Water Level from TOC (d _{u0}): 34.3 ft Depth to Static Water Level from TOC (d _{u0}): 34.3 ft Depth to Static Water Level from TOC (d _{u0}): 34.3 ft Depth to Static Water Level from TOC (d _{u0}): 34.3 ft Depth to Static Water Level from TOC (d _{u0}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{u0}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{u0}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{u0}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{u0}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{u0}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{u0}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{u0}): 34.3 ft Depth to Bottom of Aquifer from TOC (d _{u0}): 34.3 ft Depth to Top of Aquifer on static, use exact number from datalogger file. Value is negative for rising head (slug out) test). 54.11 + d _{u0} - d _{u0} (optional for a single slug test analysis or when installation sketch is not attached) Aquifer Data Saturated Thickness of Aquifer (b): ft ft ft ft ft ft ft ft ft ft	Depth Reference (Der	from Top of Cas	sing (TOC)					
Depth to Bottom of Screen from TOC (d_{sh}): 40.8 ft 3 ft Well Screen Radius (v_{s}): 3.5 in 3.5 in Depth to Top of Aquifer from TOC (d_{sh}): 34.3 ft 200 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to Top of Aquifer from TOC (d_{sh}): 34.3 ft Well Cordinates U U UNCOMFINED Depth to Top of Aquifer from Top (d_{sh}): 34.3 ft State Column Height (H) 6.5 ft H = $d_{sh} - d_{sh}$ (optional for a single slug test analysis or when installation sketch is not attached) Aquifer Data Langitude / Kasting ft for a confined aquifer ($d_{sh} - d_{sh}$ Saturated Thickness of Aquifer (b): ft ft ft an unconfined aquifer ($d_{sh} - d_{sh}$ Hydraulic Conductivity Anisotropy Ratio (K/, K_h): ft ft assume eather be or an unconfined aquifer ($d_{sh} -$				ypically the top of the	open casing (TOC	C).		
Depth to Bottom of Screen from TOC (d_{sh}): 40.8 ft 3 ft Well Screen Radius (v_{s}): 3.5 in 3.5 in Depth to Top of Aquifer from TOC (d_{sh}): 34.3 ft 200 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to State Water Level from TOC (d_{sh}): 34.3 ft Depth to Top of Aquifer from TOC (d_{sh}): 34.3 ft Well Cordinates U U UNCOMFINED Depth to Top of Aquifer from Top (d_{sh}): 34.3 ft State Column Height (H) 6.5 ft H = $d_{sh} - d_{sh}$ (optional for a single slug test analysis or when installation sketch is not attached) Aquifer Data Langitude / Kasting ft for a confined aquifer ($d_{sh} - d_{sh}$ Saturated Thickness of Aquifer (b): ft ft ft an unconfined aquifer ($d_{sh} - d_{sh}$ Hydraulic Conductivity Anisotropy Ratio (K/, K_h): ft ft assume eather be or an unconfined aquifer ($d_{sh} -$	Depth to Top of Scree	n from TOC (d _v): 37.8 ft	Well Casing Rad	dius (r.):	1.0 in	0.1.ft		
Screen Length (L): 3 ft Depth to Top of Aquifer from TOC (d_{u_0}): 34.3 ft Depth to Static Water Level from TOC (d_{u_0}): 34.3 ft Depth to Bottom of Aquifer from TOC (d_{u_0}): 200 ft Initial head on pressure transducer (Hi) 4.2 ft (as read from datalogger prior to testing) UNCONFINED Is Aquifer Confined or Unconfined (enter "c" or "u"): U U U U General Observed Initial Displacement Recorded in Data File (H ₀) -1.7 ft (Change in water level from static, use exact number from datalogger file. Value is negative for rising head (slug out) test). Static Water Column Height (H) 6.5 ft for a confined aquifer (d_{bu} - d_{ui} Well Coordinates Latitude / Northing (optional for a single slug test analysis or when installation sketch is not attached) Aquifer Data ft for a confined aquifer (d_{bu} - d_{ui}) Saturated Thickness of Aquifer (b): ft for an a confined aquifer (d_{bu} - d_{ui}) Hydraulic Conductivity Anisotropy Ratio (K,/K_h): ft for a confined aquifer (d_{bu} - d_{ui}) Construction ft depth from top of well screen (L) ft Transducer Depth from Static Water Level (T) 4.2 ft H,			-	· · ·				
Depth to Static Water Level from TOC (d_{sw}): 34.3 ft Depth to Bottom of Aquifer from TOC (d_{sw}): 200 ft Initial head on pressure transducer (H) 4.2 ft (as read from datalogger prior to testing) 200 ft Is Aquifer Confined or Unconfined (enter 'c' or 'u'): U U UNCONFINED Static Water Level (rom static, use exact number from datalogger file. Value is negative for rising head (slug out) test). 5.5 ft H = $d_{sx} - d_{su}$ Observed Initial Displacement Recorded in Data File (Hq) -1.7 ft (Change in water level from static, use exact number from datalogger file. Value is negative for rising head (slug out) test). Static Water Column Height (H) 6.5 ft H = $d_{xx} - d_{xu}$ (optional for a single slug test analysis or when instatician sketch is not attached) Aquifer Data				(,		3 ft		
Initial head on pressure transducer (H) 42 ft (as read from datalogger prior to testing) Is Aquifer Confined or Unconfined (enter 'c' or "u'): U UNCONFINED Is Well Partially of Fully Penetrating (enter "p" or "f"): P PARTIALLY General Observed Initial Displacement Recorded in Data File (H ₀) -1.7 ft (Charge in water level from static, use exact number from datalogger file. Value is negative for rising head (slug out) test). Static Water Column Height (H) 6.5 ft H = d _w , -d _{wi} Well Coordinates Latitude / Northing (optional for a single slug test analysis or when installation sketch is not attached) Aquifer Data ft for a confined aquifer (d _{bw} -d _w) Saturated Thickness of Aquifer (b): ft for a confined aquifer (d _{bw} -d _w) Hydraulic Conductivity Anisotropy Ratio (K,/K _h): ft for a confined aquifer (d _{bw} -d _w) Using the of Well Screen (d) ft depth from bottom of confining layer for a confined aquifer (d _{bw} -d _w) Length of Well Screen (L) 3 ft d _{dw} -d _{hw} Transducer Depth from Static Water Level (T) 4.2 ft H, Radius of Well Casing (r_c) 0.08 ft assume well screen = r_c Radius of Well Skin (r_w) 0.29 ft well casing pl		Level from TOC (d _{swl}): 34.3 ft				_		
Is Well Partially of Fully Penetrating (enter "p" or "i"): P PARTIALLY General Observed Initial Displacement Recorded in Data File (H ₀) -1.7 ft (Change in water level from static, use exact number from datalogger file. Value is negative for rising head (slug out) test). Static Water Column Height (H) 6.5 ft H = d _{us} - d _{uwi} (optional for a single slug test analysis or when inside Northing installation sketch is not attached) Aquifer Data					(54)			
Is Well Partially of Fully Penetrating (enter "p" or "i"): P PARTIALLY General Observed Initial Displacement Recorded in Data File (H ₀) -1.7 ft (Change in water level from static, use exact number from datalogger file. Value is negative for rising head (slug out) test). Static Water Column Height (H) 6.5 ft H = d _{us} - d _{uwi} (optional for a single slug test analysis or when inside Northing installation sketch is not attached) Aquifer Data	ls Aquifer Confined (or Linconfined (enter "c" or "u"):		LIN				
Observed Initial Displacement Recorded in Data File (H ₀) -1.7 ft (Change in water level from static, use exact number from datalogger file. Value is negative for rising head (slug out) test). Static Water Column Height (H) 6.5 ft H = d _u - d _{ow} Well Coordinates								
Observed Initial Displacement Recorded in Data File (H ₀) -1.7 ft (Change in water level from static, use exact number from datalogger file. Value is negative for rising head (slug out) test). Static Water Column Height (H) 6.5 ft H = d _u - d _{ow} Well Coordinates	General							
Static Water Column Height (H) 6.5 ft H = d_{obs} - d_{awl} Well Coordinates Latitude / Northing (optional for a single slug test analysis or when installation sketch is not attached) Aquifer Data ft for a confined aquifer (d_{bar}-d_{iw}) Saturated Thickness of Aquifer (b): ft for a confined aquifer (d_{bar}-d_{iw}) Hydraulic Conductivity Anisotropy Ratio (K _v /K _h): 165.7 ft for a unconfined aquifer (d_{bar}-d_{iw}) Construction ft depth from bottom of confining layer for a confined aquifer (d _{uar} -d _{ua}) Depth to Top of Well Screen (d) ft depth from bottom of confining layer for a confined aquifer (d _{uar} -d _{uaw}) Length of Well Screen (L) 3.5 ft depth from top of water table for an unconfined aquifer (d _{uar} -d _{uaw}) Transducer Depth from Static Water Level (T) 4.2 ft H, Radius of Downhole Equipment (r _{wq}) ft assume well screen = r _c Radius of Packer (r _p) ft assume 0.0 ft for pressure transducer and slug alone Inside Radius of Well Skin (r _{sk}) 0.29 ft assume r _{uk} = r _w unless known Well Corrections (Nas correction applied for frictional well log? Yes (No) If so, Kinematic viscosity: m ² /sec Gravitational acceleration:		lacement Recorded in Data File (H ₀)	-1.7 ft	(Change in water le	evel from static, us	e exact number i	from	
Well Coordinates Latitude / Northing Longitude / Easting (optional for a single slug test analysis or when installation sketch is not attached) Aquifer Data Saturated Thickness of Aquifer (b): ft for a confined aquifer (d _{ba} -d _{aw}) (use 1, unless detailed information is available) Construction Depth to Top of Well Screen (d) ft depth from bottom of confining layer for a confined aquifer (d _{ba} -d _{ww}) (input 0 if well screen extends to or into the upper confining layer) Length of Well Screen (L) ft depth from top of water table for an unconfined aquifer (d _{ba} -d _{ww}) (input 0 if well is screen extends to or into the upper confining layer) Length of Well Screen (L) ft depth from top of water table for an unconfined aquifer (d _{ba} -d _{ww}) (input 0 if well is screen extends to or into the upper confining layer) Latitude Zate ft depth from top of water table for an unconfined aquifer (d _{ba} -d _{ww}) (input 0 if well is screen extends to or into the upper confining layer) Latitude Zate ft depth from top of water table for an unconfined aquifer (d _{ba} -d _{ww}) (input 0 if well is screen extends to or into the upper confining layer) Latitude Zate ft depth from top of the water table) Inside Radius of Downhole Equipment (r _{eq}) ft assume well screen = r _c Radius of Dacker (r _p) ft well Casing plus filter pack Outer Radius of Well (S _{in}) 0.29 ft <td></td> <td></td> <td>·</td> <td>datalogger file. Val</td> <td>ue is negative for r</td> <td>ising head (slug</td> <td>out) test).</td>			·	datalogger file. Val	ue is negative for r	ising head (slug	out) test).	
Longitude / Easting installation sketch is not attached) Aquifer Data Saturated Thickness of Aquifer (b):		5 ()		50 0111				
Aquifer Data Saturated Thickness of Aquifer (b): ft for a confined aquifer (d _{ba} -d _{ba}) Hydraulic Conductivity Anisotropy Ratio (K,/K _n): 165.7 ft fr or an unconfined aquifer (d _{ba} -d _{ba}) Construction (use 1, unless detailed information is available) Construction ft depth from bottom of confining layer for a confined aquifer (d _{ba} -d _{ba}) (input 0 if well screen extends to or into the upper confining layer) Length of Well Screen (L) 3.5 ft depth from top of water table for an unconfined aquifer (d _{ba} -d _{ba}) (input 0 if well is screen extends to or into the upper confining layer) Length of Well Screen (L) 3.5 ft depth from top of water table for an unconfined aquifer (d _{ba} -d _{ba}) (input 0 if well is screened across the water table) Transducer Depth from Static Water Level (T) 4.2 ft H _i Radius of Downhole Equipment (r _{eq}) ft assume well screen = r _c Radius of Downhole Equipment (r _{eq}) ft use 0.0 ft for pressure transducer and slug alone Inside Radius of Well (K _i) 0.29 ft well casing plus filter pack Outer Radius of Well Skin (r _{sk}) 0.29 ft assume r _{sk} = r _w unless known Well Corrections (re): (re): H(0)*: Was correction applied for effective casing radius? Yes No ft	Well Coordinates		0			s or when		
Saturated Thickness of Aquifer (b): ft for a confined aquifer (d _{ba} -d _{ba}) Hydraulic Conductivity Anisotropy Ratio (K,/K _h): for an unconfined aquifer (d _{ba} -d _{ba}) Construction ft depth from bottom of confining layer for a confined aquifer (d _{ba} -d _{ba}) Depth to Top of Well Screen (d) ft depth from bottom of confining layer for a confined aquifer (d _{ba} -d _{ba}) Length of Well Screen (L) 3.5 ft depth from top of water table for an unconfined aquifer (d _{ba} -d _{ba}) Transducer Depth from Static Water Level (T) 3 ft d _{ba} -d _{ba} Radius of Well Casing (r _c) 0.08 ft assume well screen = r _c Radius of Packer (r _p) ft use 0.0 ft if packer was not used Inside Radius of Well Skin (r _{sk}) 0.29 ft well casing plus filter pack Outer Radius of Well Skin (r _{sk}) 0.29 ft well casing plus filter pack Was correction applied for effective casing radius? Yes Nbo ft H(0)*: If so, Method: Yes Nbo Gravitational acceleration:		Long	itude / Easting	installation sketch	s not attached)			
Hydraulic Conductivity Anisotropy Ratio (K _v /K _n): ^{165.7} / ₁ ft for an unconfined aquifer (d _{ba} -d _{swl}) (use 1, unless detailed information is available) Construction Depth to Top of Well Screen (d) ft depth from bottom of confining layer for a confined aquifer (d _{ba} -d _{swl}) (input 0 if well screen extends to or into the upper confining layer) 3.5 ft depth from top of Well Screen (L) 3.5 ft depth from top of welt rable for an unconfined aquifer (d _{ba} -d _{swl}) (input 0 if well screen extends to or into the upper confining layer) Length of Well Screen (L) 3 ft d _{ba} -d _{bs} Transducer Depth from Static Water Level (T) 4.2 ft H _i Radius of Well Casing (r _c) 0.08 ft assume well screen = r _c Radius of Packer (r _p) ft use 0.0 ft if packer was not used Inside Radius of Well Skin (r _{sk}) 0.29 ft assume 0.0 ft for pressure transducer and slug alone Inside Radius of Well Skin (r _{sk}) 0.29 ft assume r _{sk} = r _w unless known Well Corrections Yes Na Was correction applied for effective casing radius? Yes Na Mas correction applied for effective casing radius? Yes Na Mas correction applied for effective casing radius? Yes Na				f				
Hydraulic Conductivity Anisotropy Ratio (K _v /K _h): (use 1, unless detailed information is available) Construction ft depth from bottom of confining layer for a confined aquifer (dts-dta) (input 0 if well screen extends to or into the upper confining layer) 2.5 ft depth from top of water table for an unconfined aquifer (dts-dta) (input 0 if well screen extends to or into the upper confining layer) 2.6 ft depth from top of water table for an unconfined aquifer (dts-dta) (input 0 if well is screened across the water table) Length of Well Screen (L) 3 ft dept-dta Transducer Depth from Static Water Level (T) 4.2 ft H, Radius Data Inside Radius of Well Casing (r _c) 0.08 ft assume well screen = r _c Radius of Downhole Equipment (r _{eq}) ft use 0.0 ft for pressure transducer and slug alone Inside Radius of Well (r _w) 0.29 ft use 0.0 ft for pressure transducer and slug alone Quer Radius of Well (r _w) 0.29 ft assume r _{sk} = r _w unless known Well Corrections Yes (No) n(e): H(0)*: Was correction applied for effective casing radius? Yes (No) ft so, Kinematic viscosity: m ² /sec If so, Kinematic viscosity: m ² /sec Gravitational acceleration: m/sec ²	Saturated Thickness	of Aquiter (b):			,,			
Construction ft depth from bottom of confining layer for a confined aquifer (dts-dta) (input 0 if well screen extends to or into the upper confining layer) Bepth to Top of Well Screen (d) ft depth from bottom of confining layer for a confined aquifer (dts-dta) (input 0 if well screen extends to or into the upper confining layer) Length of Well Screen (L) 3.5 ft depth from top of water table for an unconfined aquifer (dts-dta) (input 0 if well is screened across the water table) Inside Radius of Depth from Static Water Level (T) 4.2 ft H _i Radius Data 0.08 ft assume well screen = r _c Radius of Downhole Equipment (r _{eq}) ft assume 0.0 ft for pressure transducer and slug alone Inside Radius of Packer (r _p) ft use 0.0 ft if packer was not used Radius of Well Skin (r _{sk}) 0.29 ft well casing plus filter pack Outer Radius of Well Skin (r _{sk}) 0.29 ft assume r _{sk} = r _w unless known Well Corrections Yes Noc n(e): H(0)*: Was correction applied for effective casing radius? Yes Noc Gravitational acceleration: m/sec ²	Hydraulia Conductivi	ty Anigotropy Botio (K /K):	165.7 π			available)		
Depth to Top of Well Screen (d) ft depth from bottom of confining layer for a confined aquifer (d _{1s} -d _{1a}) (input 0 if well screen extends to or into the upper confining layer) 3.5 ft depth from top of water table for an unconfined aquifer (d _{1s} -d _{1sw}) (input 0 if well screen extends to or into the upper confining layer) Length of Well Screen (L) 3 ft depth from top of water table for an unconfined aquifer (d _{1s} -d _{1sw}) (input 0 if well is screened across the water table) Radius Data 3 ft d _{bs} -d _{1s} Inside Radius of Well Casing (r _c) 0.08 ft assume well screen = r _c Radius of Downhole Equipment (r _{eq}) ft assume 0.0 ft for pressure transducer and slug alone Inside Radius of Well (r _w) 0.29 ft well casing plus filter pack Outer Radius of Well Skin (r _{sk}) 0.29 ft assume r _{sk} = r _w unless known Well Corrections Yes No n(e): H(0)*: Was correction applied for effective casing radius? Yes No Gravitational acceleration: m/sec ²		ty Anisotropy Ratio (R_v/R_h) .	·	(use 1, unless deta	lied mormation is	avallable)		
Length of Well Screen (L) 3.5 ft depth from top of water table for an unconfined aquifer (d_{ts} - d_{swl}) Transducer Depth from Static Water Level (T) 3 ft d_{bs} - d_{ts} Radius Data 0.08 ft assume well screen = r_c Inside Radius of Well Casing (r_c) 0.08 ft assume 0.0 ft for pressure transducer and slug alone Inside Radius of Packer (r_p) ft use 0.0 ft if packer was not used Radius of Well Skin (r_{sk}) 0.29 ft well casing plus filter pack Outer Radius of Well Skin (r_{sk}) 0.29 ft assume $r_{sk} = r_w$ unless known Well Corrections Yes No Was correction applied for effective casing radius? Yes Yes If so, Kinematic viscosity: m²/sec Gravitational acceleration: m/sec²					- f f		······································	
3.5 ft depth from top of water table for an unconfined aquifer (d _{ts} -d _{swl}) Length of Well Screen (L) 3 ft Transducer Depth from Static Water Level (T) 4.2 ft Radius Data 0.08 ft Inside Radius of Well Casing (r _c) 0.08 ft Radius of Downhole Equipment (r _{eq}) ft Inside Radius of Packer (r _p) 0.08 ft Radius of Well (r _w) 0.29 ft Outer Radius of Well Skin (r _{sk}) 0.29 ft Well Corrections Yes Was correction applied for effective casing radius? Yes If so, Kinematic viscosity: Mass correction applied for frictional well log? Yes If so, Kinematic viscosity: main m²/sec	Depth to Top of Wei	Screen (d)	π	-				
Length of Well Screen (L) 3 ft dbs-dts Transducer Depth from Static Water Level (T) 4.2 ft Hi Radius Data 0.08 ft assume well screen = r_c Radius of Downhole Equipment (req) ft assume 0.0 ft for pressure transducer and slug alone Inside Radius of Packer (rp) 6.08 ft assume 0.0 ft for pressure transducer and slug alone Inside Radius of Packer (rp) 6.09 ft use 0.0 ft if packer was not used Radius of Well Skin (rsk) 0.29 ft well casing plus filter pack Outer Radius of Well Skin (rsk) 0.29 ft assume rsk = rw unless known Well Corrections Yes No n(e): H(0)*: Was correction applied for effective casing radius? Yes No Yes No If so, Kinematic viscosity: m ² /sec Gravitational acceleration: m/sec ²			3.5.ft	· ·				
Length of Well Screen (L) 3 ft dbs ^{-d} ts Transducer Depth from Static Water Level (T) 4.2 ft H _i Radius Data Inside Radius of Well Casing (r _c) 0.08 ft assume well screen = r _c Radius of Downhole Equipment (r _{eq}) ft assume 0.0 ft for pressure transducer and slug alone Inside Radius of Packer (r _p) ft use 0.0 ft if packer was not used Radius of Well Skin (r _{sk}) 0.29 ft well casing plus filter pack Outer Radius of Well Skin (r _{sk}) 0.29 ft assume r _{sk} = r _w unless known Well Corrections Yes No n(e): H(0)*: Was correction applied for effective casing radius? Yes No If so, Method: m/sec ² If so, Kinematic viscosity: m ² /sec Gravitational acceleration: m/sec ²			<u> </u>				(uts-uswl)	
Transducer Depth from Static Water Level (T) 4.2 ft H _i Radius Data Inside Radius of Well Casing (r _c) 0.08 ft assume well screen = r _c Radius of Downhole Equipment (r _{eq}) ft assume 0.0 ft for pressure transducer and slug alone Inside Radius of Packer (r _p) ft use 0.0 ft if packer was not used Radius of Well (r _w) 0.29 ft well casing plus filter pack Outer Radius of Well Skin (r _{sk}) 0.29 ft assume r _{sk} = r _w unless known Well Corrections Yes No n(e): H(0)*: Was correction applied for effective casing radius? Yes No Gravitational acceleration: m/sec ²	Length of Well Scree	en (L)	3 ft	· ·		,		
Inside Radius of Well Casing (r_c) 0.08 ft assume well screen = r_c Radius of Downhole Equipment (r_{eq}) ft assume 0.0 ft for pressure transducer and slug alone Inside Radius of Packer (r_p) ft use 0.0 ft if packer was not used Radius of Well (r_w) 0.29 ft well casing plus filter pack Outer Radius of Well Skin (r_{sk}) 0.29 ft assume $r_{sk} = r_w$ unless known Well Corrections Yes No n(e): H(0)*: Was correction applied for effective casing radius? Yes No H(0)*: H(0)*: Was correction applied for frictional well log? Yes No Gravitational acceleration: m/sec ²	-							
Inside Radius of Well Casing (r_c) 0.08 ft assume well screen = r_c Radius of Downhole Equipment (r_{eq}) ft assume 0.0 ft for pressure transducer and slug alone Inside Radius of Packer (r_p) ft use 0.0 ft if packer was not used Radius of Well (r_w) 0.29 ft well casing plus filter pack Outer Radius of Well Skin (r_{sk}) 0.29 ft assume $r_{sk} = r_w$ unless known Well Corrections Yes No n(e): H(0)*: Was correction applied for effective casing radius? Yes No H(0)*: H(0)*: Was correction applied for frictional well log? Yes No Gravitational acceleration: m/sec ²	Radius Data							
Radius of Downhole Equipment (r_{eq}) ft assume 0.0 ft for pressure transducer and slug alone Inside Radius of Packer (r_p) ft use 0.0 ft if packer was not used Radius of Well (r_w) 0.29 ft well casing plus filter pack Outer Radius of Well Skin (r_{sk}) 0.29 ft assume $r_{sk} = r_w$ unless known Well Corrections Yes No n(e): H(0)*: Was correction applied for effective casing radius? Yes No H(0)*: m/sec ² If so, Kinematic viscosity: m ² /sec Gravitational acceleration: m/sec ²		ll Casing (r _c)	0.08 ft	assume well scree	n = r _c			
Inside Radius of Packer (rp) ft use 0.0 ft if packer was not used Radius of Well (rw) 0.29 ft well casing plus filter pack Outer Radius of Well Skin (rsk) 0.29 ft assume rsk = rw unless known Well Corrections Yes No n(e): H(0)*: Was correction applied for effective casing radius? Yes No H(0)*: m/sec² Was correction applied for frictional well log? Yes No Ft Gravitational acceleration: m/sec²			ft		0	r and slug alone		
Radius of Well (r _w) 0.29 ft well casing plus filter pack Outer Radius of Well Skin (r _{sk}) 0.29 ft assume r _{sk} = r _w unless known Well Corrections Yes No n(e): H(0)*: Was correction applied for effective casing radius? Yes No H(0)*: H(0)*: Was correction applied for frictional well log? Yes No Yes No H(0)*: If so, Kinematic viscosity: m²/sec Gravitational acceleration: m/sec²			ft			5		
Outer Radius of Well Skin (rsk) 0.29 ft assume rsk = rw unless known Well Corrections Was correction applied for effective casing radius? Yes No If so, Method: n(e): H(0)*: Was correction applied for frictional well log? Yes No If so, Kinematic viscosity: m²/sec Gravitational acceleration: m/sec²		()						
Was correction applied for effective casing radius? Yes No If so, Method:		l Skin (r _{sk})	0.29 ft					
If so, Method: n(e): H(0)*: Was correction applied for frictional well log? Yes No If so, Kinematic viscosity: m²/sec Gravitational acceleration: m/sec²	Well Corrections							
If so, Method: n(e): H(0)*: Was correction applied for frictional well log? Yes No If so, Kinematic viscosity: m²/sec Gravitational acceleration: m/sec²		ed for effective casing radius?	Yes No					
If so, Kinematic viscosity:m ² /sec Gravitational acceleration:m/sec ²			n(e)):	H(0)*:	_		
	Was correction appl	-						
Comments: Silty material buildup at bottom of piezometer from 43.0 to 40.8 feet.	lf so,	Kinematic viscosity:m ² /s	ec	Gravitational acce	leration:	m/sec ²		
Comments: Silty material buildup at bottom of piezometer from 43.0 to 40.8 feet.								
	Comments: S	ilty material buildup at bottom of piezor	neter from 43.0 to	40.8 feet.				

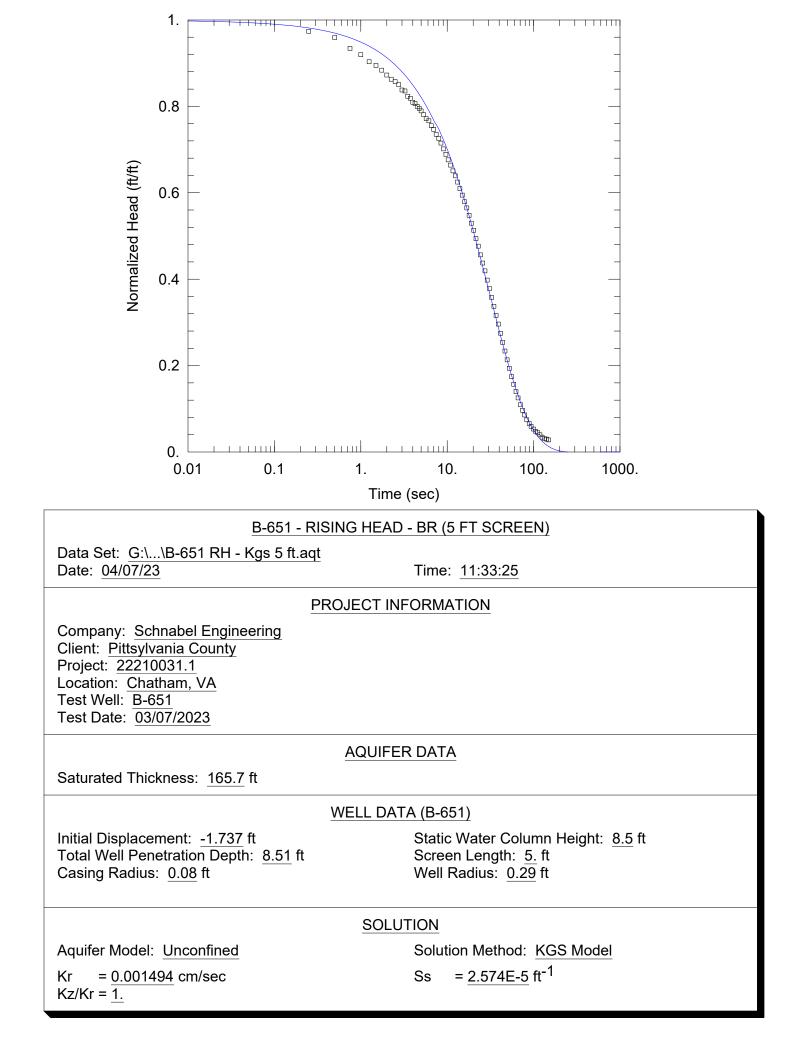

WELL DIMENSIONS AND INPUT DATA FOR HYDRAULIC CONDUCTIVITY (SLUG TESTS)



٦

Project:	Cherrystone Creek Watershed E)am 2A	Well ID:		B-651	
Location:			Date of Test:	3/7/2023		
Schnabel No.:	22210031.100		Test Type (circle	one): Falling He	ad Test or Ri	sing Head Test
Client:	Pittsylvania County		By:	SGA	Date:	3/19/2023
			Checked:	SMB	Date:	3/29/2023
Well Construction De	tails (obtain data fron	n boring logs and v	vell installation sketcl	h)		
Depth Reference (De All depths listed b	epth = 0.00 ft) <u>from Top of Cas</u> elow should be measured from the same	<u> </u>	pically the top of the	open casing (TO	C).	
Screen Length (L):	creen from TOC (d_{bs}): 42.8 ft 5 ft r Level from TOC (d_{swl}): 34.3 ft	Depth to Bottom		C (d _{ba}): 20		
Is Aquifer Confined	or Unconfined (enter "c" or "u"): Fully Penetrating (enter "p" or "f"):	U P	UN	CONFINED RTIALLY		
General						
Observed Initial Dis Static Water Colurr Well Coordinates	Latitu	1.7 ft 8.5 ft ude / Northing itude / Easting	(Change in water le datalogger file. Value $H = d_{bs} - d_{swl}$ (optional for a single installation sketch i	ue is negative for le slug test analys	rising head (slug	
Aquifer Data						
Saturated Thicknes	ss of Aquifer (b):		for a confined aquit			
Hydraulic Conducti	vity Anisotropy Ratio (K _v /K _h):	<u>165.7</u> ft	for an unconfined a (use 1, unless deta		s available)	
Construction						
Depth to Top of We Length of Well Scre Transducer Depth f		ft 5 ft 5 ft 6 ft	depth from bottom (input 0 if well scree depth from top of w (input 0 if well is sc d _{bs} -d _{ts} H _i	en extends to or i vater table for an	nto the upper co unconfined aquif	nfining layer)
Radius Data						
Inside Radius of W Radius of Downhol Inside Radius of Pa Radius of Well (r _w) Outer Radius of Wel	e Equipment (r_{eq}) acker (r_p)	0.08 ft ft 0.29 ft 0.29 ft	assume well screen assume 0.0 ft for p use 0.0 ft if packer well casing plus filt assume $r_{sk} = r_w$ unl	ressure transduce was not used er pack	er and slug alone	3
Well Corrections						
If so, Method:	lied for effective casing radius?	Yes / No n(e)	:	H(0)*:		
Was correction app If so,	blied for frictional well log? Kinematic viscosity:m²/se	Yes No	Gravitational acce	leration:	m/sec ²	
Comments:	Silty material buildup at bottom of piezon	neter from 43.0 to	40.8 feet. Assumed fl	ow into filter pack	around clogged	section.





٦

Project:	Cherrystone Creek Watershed D	am 2A	Well ID:		B-651	
Location:	Chatham, VA		Date of Test:	3/7/2023		
Schnabel No.:	22210031.100		Test Type (circle	one): Falling He	ad Test or	sing Head Test
Client:	Pittsylvania County		By:	SGA	Date:	3/19/2023
			Checked:	SMB	Date:	3/29/2023
Well Construction De	tails (obtain data from	boring logs and v	vell installation sketcl	h)		
Depth Reference (De All depths listed b	epth = 0.00 ft) <u>from Top of Casi</u> elow should be measured from the same		pically the top of the	open casing (TO	C).	
Screen Length (L): Depth to Static Wate Initial head on press	$\begin{array}{c} \text{Green from TOC } (d_{\text{bs}}) \text{:} & \begin{array}{c} 42.8 \text{ ft} \\ \hline 5 \text{ ft} \\ \text{or Level from TOC } (d_{\text{swl}}) \text{:} & \begin{array}{c} 34.3 \text{ ft} \\ \hline 4.2 \text{ ft} \\ \end{array} \end{array}$	Depth to Bottom (as read from da	dius (r _w): Aquifer from TOC (d of Aquifer from TOC atalogger prior to test	C (d _{ba}): 20		
	l or Unconfined (enter "c" or "u"): Fully Penetrating (enter "p" or "f"):	U P		CONFINED RTIALLY		
General Observed Initial Dis Static Water Colun Well Coordinates	Latitu	-1.7 ft 8.5 ft de / Northing itude / Easting	(Change in water le datalogger file. Val $H = d_{bs} - d_{swl}$ (optional for a singli installation sketch i	ue is negative for le slug test analys	rising head (slug	
Aquifer Data Saturated Thicknes Hydraulic Conducti	ss of Aquifer (b): vity Anisotropy Ratio (K _v /K _h):		for a confined aqui for an unconfined a (use 1, unless deta	aquifer (d _{ba} -d _{swl})	s available)	
Construction Depth to Top of Wo Length of Well Scr Transducer Depth		ft 5 ft 5 ft 5 ft	(input 0 if well is sc d _{bs} -d _{ts}	en extends to or i vater table for an	nto the upper co unconfined aquif	nfining layer)
Radius Data Inside Radius of W Radius of Downhol Inside Radius of Pa Radius of Well (r _w) Outer Radius of W	e Equipment (r_{eq}) acker (r_p)	ft 0.29 ft	assume well scree assume 0.0 ft for p use 0.0 ft if packer well casing plus filt assume r _{sk} = r _w unl	ressure transduce was not used er pack	er and slug alone	2
If so, Method:	blied for effective casing radius? Died for frictional well log? Kinematic viscosity:m²/se	Yes No	: Gravitational acce	H(0)*:	m/sec ²	
Comments:	Silty material buildup at bottom of piezom	eter from 43.0 to 4	40.8 feet. Assumed fl	ow into filter pack	around cloaded	section.

APPENDIX E

RESULTS OF HYDRAULIC CONDUCTIVITY TESTING IN ROCK

Rock Hydraulic Conductivity Test Methods Rock Hydraulic Conductivity Test Results

HYDRAULIC CONDUCTIVITY TESTING IN ROCK

Brief Description of Packer Testing

Hydraulic conductivity of the rock was measured at various depth intervals in borings using the method described in the US Bureau of Reclamation Ground Water Manual (1995). Hydraulic conductivity testing was performed using either a single or double-packer assembly. The single-packer assembly provided a test interval equal to the distance between the bottom of the pneumatic packer and the bottom of the boring while the double-packer assembly provided a test interval of approximately 10 feet between two pneumatic packers. Test depth intervals, or stages, were selected in the field. Tests were typically run under five pressures with the first three steps increasing in pressure and Steps 4 and 5 decreasing in pressure. Steps 4 and 5 may not have been run if the test interval was not taking water at the maximum pressure (Step 3).

The minimum pressure applied during the test (typically Steps 1 and 5) was selected so that it exceeded the hydrostatic pressure that exists under non-pumping conditions at the test interval due to the water column in the boring. The maximum pressure applied during the test (typically Step 3) was selected so that it did not exceed the total vertical stress at the test interval to minimize the potential for hydrofracturing the formation.

Results of Packer Testing

Calculations were performed using the field test data to estimate the average hydraulic conductivity in the test section, in centimeters per second (cm/s), using the method described in the US Bureau of Reclamation (1995) and for transmissivity, in Lugeons, using the method described in Houlsby (1990). Hydraulic conductivity and transmissivity values for the test interval were typically selected from the pressure step that returned the highest value. Flow rates into the test interval at different test pressures can be interpreted using published methods (USBR, 1995; Houlsby, 1990) and suggests a dilation of fractures during the tests. A summary of the transmissivity (Lugeons) and the average hydraulic conductivity (cm/s) is presented in Table 3. Details on each test are included on the test data and calculation sheets provided in this appendix.

This testing is only an approximation of the in situ hydraulic conductivity at selected locations and variations are to be expected

WATER PRESSURE TEST (PACKER TEST) SHEET 1, FIELD DATA

Project:	Cherrystone Creek Dam 2A	Boring No.:	B-51			
Location:	Chatham, VA	Hole Angle:	(degrees f	rom ver	ical
Schnabel Project No.:	22210031.1	Test Interval:	77.6	to	87.6	ft, in hole
Client Name:	Pittsylvania County	Test Interval:	77.6	to	87.6	ft, bgs
		Test Interval:	630.6	to	620.6	EL, ft
Ground Elevation (ft msl):	708.2	Test Date:	1/20/2023	5		
Northing:	3469256.4	By:	ARS		Date:	1/20/2023
Easting:	11210014.0	Checked:	SMB		Date:	3/24/2023
TEST METHOD: Single or [Double Packer Method using Multiple P	ressure Tests		Calc Sheet	Version:	2018-08-06a
	round Water Manual, US Bureau of Re		5 Chanter		version.	2010-00-004
	shaded, underlined cells. Other cells ar					
Rock Type:	Gneiss	c calculated no	Rock Unit			
Rock Weathering:	slightly to moderately weathered			31	to	100
Rock Fracturing:	slightly to moderately weathered		REC %:	92	to	100
Source of test water and cla		Reservoir		92	10	100
Method of cleaning hole price	-	Flushed with	wator			
• .	-			huakat		
Method of checking flow me		Calibrated wi	in 5 gallon	DUCKEL		
Drilling Fluid (water or type of		Water	11			
Packer Brand:		Packer Model:			200	in ai
Packer Inflation Pressure:	Start of testing:		psi	End:	200	psi
Packer Length (length of bla	,		feet			
Method: Single (1) or double		2	-			
	er, Method 1 (single packer test), A ₁ :		feet			
Interval between packers, N	lethod 2 (double packer test), A ₂ :	10.0	feet			
Depth of hole at time of test	:	97.6	vertical ft	below grou	nd surfa	ce
Depth to top of rock (thickne	ess of soil interval), R_{d:}	72.6	vertical fe	et below gr	ound su	rface
Diameter of borehole, d :	, 1	3.0	inches	0.25	feet	
Radius of the borehole, <i>r:</i>		0.13	feet			
Depth to water table (thickne	ess of unsaturated material above					
water table), U :		46.0	feet	19.9	psi	
Depth to top of impermeable	e zone:	200.0	feet			
Estimated porosity of test se	ection:	10%	-			
Thickness of saturated mate	erial above a relatively impermeable		-			
bed, S :		154.0	feet			
Depth to top of test section	(bottom of upper packer), h _t :	77.6	feet bgs	33.6	psi	
Depth to bottom of test sect	ion (top of lower packer if double					
packer used, bottom of hole	for a single packer, D):	87.6	feet bgs			
Is test section above or belo	w water table?	below	-			
For tests above water table	determine h 1, the distance from					
gauge to bottom of test inter	rval:		feet		psi	
	ble determine h 1, the distance				•	
between the gauge and the		47.4	feet	20.5	nsi	
Friction Loss Parameters			1001	20.0	poi	
	ead loss occurs (distance from gauge					
to the bottom of the top pac		99.0	feet			
	pove the ground surface at boring:	1.4	feet ags			
	essure gauge to top of pipe in boring:	20.0	feet			
Number of 90° Elbows dowr		4				
Number of 45° elbows down		0	-			
	c, rubber hose, black plastic):	steel	-			
Pipe Outside Diameter (mea	• •	2.75	inches			
-			-			
Pipe Inside Diameter (meas		2.380	inches			
Pipe Nominal Diameter (app	biox inside diameter):	2.00	inches			
Pipe Schedule:	atura	NQ Rods	- °F			
Approximate Water Temper	aure	40	°F			

WATER PRESSURE TEST (PACKER TEST) SHEET 1b, FIELD TEST PARAMETERS

TEST LIMITATIONS Have the limitations of the test and calculation been met?		
The value of S must be greater or equal to 5A	True	
The value A/d must be less than 5.	True	
Packer length must be >=10r for double packer setup	True	
CALCULATE WATER INJECTION PRESSURES TO BE APPLIED	DURING THE TEST	
Estimated Confining Pressure, per foot of material		
Maximum pressure per foot of rock, p _{Rmax} :	<u> </u>	2.3 ft of water
Maximum allowable pressure per foot of soil, p_{Smax}:	0.5 psi/ft	1.2 ft of water
For reference, the pressure at the center of the test interval applied	-	04.0 ft a familia
the head of water standing in pipe:	36.4 psi	84.0 ft of water
Target maximum <u>effective pressure</u> for this test (P_{t max}) :		
$(R_{d} * P_{Smax}) + [(h_{t} - R_{d}) * P_{Rmax})]$	46.3 psi	46.3 psi
Maximum Allowable Water Injection Gauge Pressure (pressure	at gauge during test)	
Estimated maximum flow for this test:	<u>1</u> gpm	
Estimated frictional pressure loss $({f P}_{\sf L})$ for this test:	0.0 psi	0.0 ft of water
Maximum Allowable <u>Gauge Pressure</u> for this test: Ptmax - h ₁	26 psi	25.8 psi
Percent of Maximum Allowable Pressure to be Applied	80%	
Summary of Target Water Injection Pressures - Suggested Valu	les for <u>GAUGE</u> Pressure	
Step 1, Minimum Pressure, approx 33% of maximum	7 psi	
Step 2, approx 67% of maximum	14 psi	
Step 3, Maximum Pressure	21 psi	
Step 4, approx 67% of maximum	14 psi	
Step 5, approx 33% of maximum	7 psi	
Proposed Packer Inflation Pressure at tank gauge (for gas):	126 psi	
Maximum Packer Inflation Pressure at tank gauge (for gas):	564 psi	DO NOT EXCEED
Summary of Target Water Injection Pressures - Suggested Valu		ure
Step 1, approx 33% of maximum	12 psi	
Step 2, approx 67% of maximum	25 psi	
Step 3, Maximum Effective Pressure	37 psi	
Step 4, approx 67% of maximum	25 psi	44.00
Step 5, approx 33% of maximum	12 psi	44.00
AARDVARK, QSP, & GEOPRO BIMBAR PACKERS - MAX. PACK	ER INFLATION PRESSU	RE TO BE APPLIED
USE GEOPRO CALCULATION (factors in water level)		
Calculated Packer Inflation Pressure for test: G = [(Dp x psi/foc		126 psi
Unconfined packer pressure rating (\mathbf{Sp}) for the borehole size (see	chart, refs tab):	<u> </u>
Dp = Depth to top of test section or bottom of top packer (feet)		77.6 ft
Pp = Injection pump pressure (psi) or maximum proposed gau	ge pressure	21 psi
Confined pressure rating for borehole size (from chart, references ta	ab):	550 psi
Max packer inflation pressure (Confined packer pressure + [(Dp - D		564 psi
Dw = Depth to static water level in borehole (feet)		46 ft
Does calculated packer inflation pressure (G) exceed calculated max p	backer inflation pressure?	NO
If yes, then packer may fail during test.		

If yes, then packer may fail during test.

WATER PRESSURE (PACKER) TEST SHEET 2, FIELD DATA

								≤, I I ⊑ ⊑		
Project:		Cherrystone	Creek Dan	ו 2A	Boring No	.:	B-51			
Location:		Chatham, V			Test Interv		77.6	to	87.6	bgs
Schnabel	Project No		22210031.	10	Test Interv		630.6	to	620.6	EL
Client Nan	-	Pittsylvania			Test Date		1/20/2023		020.0	
		Fillsylvalla		4/00/0000			1/20/2023		2/24/2000	
By:	ARS		Date:	1/20/2023	Checked:	SINIR		Date:	3/24/2023	
	ort of a -to-	D	0.00 414	1		ad of to	douver	11.00 414		ר ר
Time at st		p:	8:00 AM		Time at er		down:	11:00 AM		4
Time at sta	art of test:		8:50 AM		Time at er	nd of test:		9:35 AM]
Course	Flanad	Flow Data		Поч	Course	Flanad	Flow			1
Gauge	Elapsed	Flow Rate	Flow Vol	Flow	Gauge	Elapsed	Rate at	Flow Vol	Flow Rate	
Pressure	Time	at Gauge	at Gauge	Rate	Pressure	Time	Gauge	at Gauge	(gpm)	
(h ₂ , psi)	(min)	(gpm)	(gal)	(gpm)	(h ₂ , psi)	(min)	(gpm)	(gal)	(99)	
0.4 a.m. 4					Otom 0	Ot and Time		0.15 AM		_
Step 1	Start Time	9:	8:50 AM		Step 3	Start Time	9: I	9:15 AM		٦
0 8	0		17832		22	0		18073.0		
8	1		17849	17.0	22	2		18091.0	18.0	
0 8	2		17866	17.0	22	3		18109.0	18.0	
0 8			17883	17.0	22			18127.0	18.0	
8	<u>4</u> 5		17900	17.0	22	4		18145.0	18.0	
8	5 6		17918	18.0	22	5		18163.0	18.0	4
8	0				22	0				-
8	7				22	8				-
8	8				22	8				-
8	9 10				22	9				-
0 8	10				22	10				-
0 8	11				22	12				-
8	12				22	12				-
8	13				22	13				-
8	15				22	15				-
U	10		Average	17.2				Average	18.0	
	Sele	cted stabilize		17.0		Selec	ted stabilize	ed flow rate	18.0	
S		essure for ca		15	Se			alculations	22	
C			-	-				·		
	Start Time	e:	9:05 AM		Step 4	Start Time	e:	9:27 AM		-
15	0		17944.0		15			18181.0		1
15	1		17960.0	16.0	15			18196.0	15.0	
15			17978.0	18.0	15			18212.0		
15	3		17997.0	19.0	15			18227.0	15.0	
15	4		18015.0	18.0	15			18242.0	15.0	
15	5		18031.0	16.0	15	5				1
15	6		18047.0	16.0				Average	15.3	
15	7		18064.0	17.0				ed flow rate	15.5	
15	8				Se	elected pre	ssure for c	alculations	15	
15	9				•				1	
15	10				Step 5	Start Time	e:	9:35 AM		-
15	11				8			18248.0		4
15	12				8			18263.0	15.0	
15	13				8			18277.0	14.0	
15	14				8	3		18292.0	15.0	
15	15				8			18306.0	14.0	4
			Average	17.1	8	5			4.4 -	-
-		cted stabilize		17.0		<u> </u>		Average	14.5	2
	•	essure for ca	alculations	18	2			ed flow rate	14.5	
Commente	S:				Se	elected pre	ssure for c	alculations	8	

Boring Log remark from 82.6 to 87.6 feet: "50% drilling return water."

WATER PRESSURE TEST (PACKER TEST) SHEET 3, CALCULATIONS

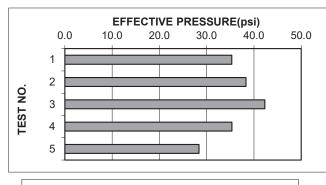
Project:	Cherrystone Creek Dam 2A
Location:	Chatham, VA
Schnabel Project No.:	22210031.1
Client Name:	Pittsylvania County
Ground Elevation (ft msl):	708.2
Northing:	3469256.4
Easting:	11210014.0

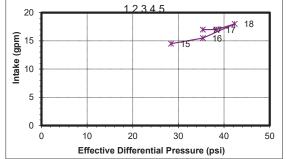
Boring No.: Test Interval [:]	B-51 77.6	to	976ft baa
rest merval.	11.0	lÜ	<u>87.6</u> ft, bgs
Test Interval:	630.6	to	620.6 EL, ft
Test Date:	1/20/2023		
By:	ARS		_
Checked:	SMB		-
			-

METHOD REFERENCE: Ground Water Manual, US Bureau of Reclamation, 1995, Chapter 10 TEST DATA (Enter data in shaded, underlined cells. Other cells are calculated from data cells):

Results of Permeability Calculations Multiple Step Test

	Flow, Q	Pressure (psi)			Hydraulic	Hydraulic	
Step	(gpm)	Gauge	Effective	Lugeons	Conductivity (ft/sec)	Conductivity (cm/sec)	
1	17	15	35	87	3.4E-05	1.0E-03	
2	17	18	38	80	3.1E-05	9.5E-04	
3	18	22	42	77	3.0E-05	9.1E-04	
4	16	15	35	79	3.1E-05	9.4E-04	
5	15	8	28	92	3.6E-05	1.1E-03	
AVERAGE	16	16	36	83	3.2E-05	9.8E-04	
VALUE (Maximum*)	18	22	42	92	3.6E-05	1.1E-03	


*Unless otherwise selected


Rock Description of Tested Interval:

D2, Gneiss, slightly to moderately weathered, slightly to moderately fractured, RQD %: 31 to 100, REC %: 92 to 100

Test Interpretation Turbulent

Turbulent flow through fractures, likely the result of fast moving water through wider fractures. Selected permeability is from the step with maximum permeability.

WATER PRESSURE TEST (PACKER TEST) SHEET 1, FIELD DATA

Project:	Cherrystone Creek Dam 2A	Boring No.:	B-51	_		
Location:	Chatham, VA	Hole Angle:	(degrees fi	rom ver	tical
Schnabel Project No.:	22210031.1	Test Interval:	87.6	to	97.6	ft, in hole
Client Name:	Pittsylvania County	Test Interval:	87.6	to	97.6	ft, bgs
		Test Interval:	620.6	to	610.6	EL, ft
Ground Elevation (ft msl):	708.2	Test Date:	1/20/2023			
Northing:	3469256.4	By:	PWA		Date:	1/20/2023
Easting:	11210014.0	Checked:	SMB		Date:	3/24/2023
TEST METHOD: Single or [Double Packer Method using Multiple F	Pressure Tests		Calc Sheet '	/ersion:	2018-08-06a
	round Water Manual, US Bureau of Re		5 Chapter		00131011.	2010-00-004
	shaded, underlined cells. Other cells ar					
Rock Type:	Gneiss, Schist	e calculated no	Rock Unit	,		
Rock Weathering:	slightly to moderately weathered		RQD %:	55	to	80
Rock Fracturing:	slightly to moderately weathered		REC %:	93	to	100
Source of test water and cla		Reservoir, cle	-		10	100
Method of cleaning hole price	-	Flushed with				
e .	•			hueket		
Method of checking flow me		Calibrated wi	in 5 gallon	DUCKEL		
Drilling Fluid (water or type of		Water Madala	11			
Packer Brand:	AARDVARC	Packer Model:			200	in al
Packer Inflation Pressure:	Start of testing:		psi	End:	200	psi
Packer Length (length of bla		2.1	feet			
Method: Single (1) or double		1	-			
-	er, Method 1 (single packer test), A ₁ :	10.0	feet			
Interval between packers, N	lethod 2 (double packer test), A ₂ :		feet			
Depth of hole at time of test	:	97.6	vertical ft	below groui	nd surfa	се
Depth to top of rock (thickne	ess of soil interval), R_{d:}	72.6	vertical fe	et below gro	ound su	rface
Diameter of borehole, d :		3.0	inches	0.25	feet	
Radius of the borehole, <i>r:</i>		0.13	feet			
Depth to water table (thickne	ess of unsaturated material above					
water table), U :		46.0	feet	19.9	psi	
Depth to top of impermeable	e zone:	200.0	feet			
Estimated porosity of test se	ection:	10%	-			
	erial above a relatively impermeable		-			
bed, S :		154.0	feet			
Depth to top of test section	(bottom of upper packer), h _t :	87.6	feet bgs	37.9	psi	
Depth to bottom of test sect	ion (top of lower packer if double					
packer used, bottom of hole	for a single packer, D):	97.6	feet bgs			
Is test section above or belo	w water table?	below				
For tests above water table	determine h ₁ , the distance from					
gauge to bottom of test inter	rval:		feet		psi	
For tests below the water ta	ble determine h 1, the distance					
between the gauge and the		47.4	feet	20.5	psi	
Friction Loss Parameters					F	
	ead loss occurs (distance from gauge					
to the bottom of the top pac		109.0	feet			
	oove the ground surface at boring:	1.4	feet ags			
	essure gauge to top of pipe in boring:	20.0	feet			
Number of 90° Elbows dowr		4	-			
Number of 45° elbows dowr		0	-			
	c, rubber hose, black plastic):	steel	-			
Pipe Outside Diameter (mea	• •	2.75	inches			
Pipe Inside Diameter (meas		2.380	inches			
Pipe Nominal Diameter (meas	• •	2.00	inches			
Pipe Schedule:	\mathcal{O}	NQ Rods				
•	ature		°F			
Approximate Water Temper	aluie	40	- Г			

WATER PRESSURE TEST (PACKER TEST) SHEET 1b, FIELD TEST PARAMETERS

TEST LIMITATIONS Have the limitations of the test and calculation been met? The value of S must be greater or equal to 5A The value A/d must be less than 5. Packer length must be >=10r for double packer setup	True True -	
CALCULATE WATER INJECTION PRESSURES TO BE APPLIED DU	JRING THE TEST	
Estimated Confining Pressure, per foot of material Maximum pressure per foot of rock, p _{Rmax} : Maximum allowable pressure per foot of soil, p _{Smax} : For reference, the pressure at the center of the test interval applied by the head of water standing in pipe:	1 psi/ft 0.5 psi/ft 40.7 psi	2.3 ft of water1.2 ft of water94.0 ft of water
Target maximum <u>effective pressure</u> for this test ($P_{t max}$): ($R_d * P_{Smax}$) + [($h_t - R_d$)* P_{Rmax})]	56.3 psi	56.3 psi
Maximum Allowable Water Injection Gauge Pressure (pressure <u>at</u>	<u>gauge</u> during test)	
Estimated maximum flow for this test:	<u>1</u> gpm	
Estimated frictional pressure loss (P _L) for this test:	0.0 psi	0.0 ft of water
Maximum Allowable <u>Gauge Pressure</u> for this test: Ptmax - h ₁	36 psi	35.8 psi
Percent of Maximum Allowable Pressure to be Applied	80%	
Summary of Target Water Injection Pressures - Suggested Values Step 1, Minimum Pressure, approx 33% of maximum Step 2, approx 67% of maximum Step 3, Maximum Pressure	9 psi 19 psi 29 psi	
Step 4, approx 67% of maximum Step 5, approx 33% of maximum	19 psi 9 psi	
Proposed Packer Inflation Pressure at tank gauge (for gas): Maximum Packer Inflation Pressure at tank gauge (for gas):	140 psi 568 psi	DO NOT EXCEED
Summary of Target Water Injection Pressures - Suggested Values		
Step 1, approx 33% of maximum	15 psi	
Step 2, approx 67% of maximum	30 psi	
Step 3, Maximum Effective Pressure	45 psi	
Step 4, approx 67% of maximum	30 psi	
Step 5, approx 33% of maximum	15 psi	44.00
AARDVARK, QSP, & GEOPRO BIMBAR PACKERS - MAX. PACKER USE GEOPRO CALCULATION (factors in water level) Calculated Packer Inflation Pressure for test: G = [(Dp x psi/foot of Unconfined packer pressure rating (Sp) for the borehole size (see cha Dp = Depth to top of test section or bottom of top packer (feet) Pp = Injection pump pressure (psi) or maximum proposed gauge Confined pressure rating for borehole size (from chart, references tab): Max packer inflation pressure (Confined packer pressure + [(Dp - Dw)	f water) + Sp + Pp] * 1.1 rt, refs tab): pressure	TO BE APPLIED 140 psi 60 psi 87.6 ft 29 psi 550 psi 568 psi
Does calculated packer inflation pressure (Confined packer pressure + [(Dp - Dw) Dw = Depth to static water level in borehole (feet) Does calculated packer inflation pressure (G) exceed calculated max pac If yes, then packer may fail during test.	-,	46 ft NO

WATER PRESSURE (PACKER) TEST SHEET 2, FIELD DATA

Project:		Cherrystone	e Creek Dam	ו 2A	Boring No.		B-51	-, • • • • •		
Location:		Chatham, V			Test Interv		87.6	- to	97.6	bgs
	Project No		22210031.2	10	Test Interv		620.6	to		EL
Client Nan		 Pittsylvania			Test Date:		1/20/2023	10	010.0	
	PWA	FillSylvaria	Date:	1/20/2023	Checked:		1/20/2023	Date:	3/24/2023	
Dy.			Date.	1/20/2023	Onecked.	SIVID		Date.	5/24/2025	
	art of setu	p:	12:00 PM		Time at er	nd of tear o	lown:	2:30 PM		
Time at st	art of test:		1:15 PM		Time at er	nd of test:		2:45 PM		ļ
Gauge	Elapsed	Flow Rate	Flow Vol	Flow	Gauge	Elapsed	Flow	Flow Vol		
Pressure	Time	at Gauge	at Gauge	Rate	Pressure	Time	Rate at	at Gauge	Flow Rate	
(h ₂ , psi)	(min)	(gpm)	(gal)	(gpm)	(h ₂ , psi)	(min)	Gauge (gpm)	(gal)	(gpm)	
Stop 1	Start Time		1:15 PM		Stop 2	Start Time		2:10 PM	L]	I
Step 1 9		ə.	17334		Step 3 28			17542.7		1
9	1		17339.3	5.3	28	1		17553.4	10.7	
9	2		17345.5	6.2	28	2		17566.6	13.2	
9	3		17349.6	4.1	28	3		17577.3	10.7	
9	4		17354.7	5.1	28	4		17589.5	12.2	
9	5		17359.7	5.0	28	5		17602.0	12.5	
9	6		17364.8	5.1	28	6		17614.3	12.3	
9	7		17369.7	4.9	28	7		17627.5	13.2	
9	8		17374.7	5.0	28	8		17640.0	12.5	
9	9 10		17379.8	5.1	28	9 10		17653.0	13.0	
9	10		17385.1 17389.9	5.3	28 28	10		17665.8	12.8	
9	11		17395.1	4.8 5.2	28	12				
9	13		17400	4.9	28	13				
9	14		17406	6.0	28	14				
9	15		17410.7	4.7	28	15				
			Average	5.1				Average	12.3	
	Selec	cted stabilize		5.0		Select	ed stabilize	ed flow rate	12.3	
S	elected pro	essure for ca	alculations	9	Se	elected pre	ssure for c	alculations	28	
Step 2	Start Time	e:	1:30 PM		Step 4	Start Time	e:	2:20 PM		
19			17436.0		19			17675.0		
19	1		17442.5	6.5	19	1		17687.1	12.1	
19	2		17450.0	7.5	19	2		17697.8	10.7	
19	3		17457.8	7.8	19			17709.2	11.4	
19 19	45		17465.4	7.6	19 19	4		17719.8	10.6	
19	6		17473.0 17482.0	7.6 9.0	19	0		17731.0	11.2	
19	7		17488.6	9.0 6.6		Soloci	od stabiliz	Average ed flow rate	11.2 11.2	
10	8		17400.0	7.8	Se			alculations	19	
19	9		17504.2	7.8	00		35010 101 0	alculations		I
19	10		17512.3	8.1	Step 5	Start Time	9:	2:25 PM		
19	11				9			17736.0		
19	12				9	1		17746.0	10.0	
19	13				9	2		17755.4	9.4	
19	14				9	3		17765.1	9.7	
19	15				9			17774.3	9.2	
	<u> </u>		Average	7.6	9	5		17781.0	6.7	
~		cted stabilize		7.5				Average	9.0	
		essure for ca	acculations	19	0-			ed flow rate	9.0 9	
Comment	5.				36	nected pre	SSULE IOL C	alculations	9	L

Boring log remark from 87.6 to 97.6 feet: "No drilling return water."

WATER PRESSURE TEST (PACKER TEST) SHEET 3, CALCULATIONS

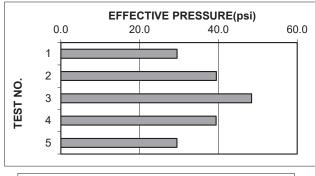
Project:	Cherrystone Creek Dam 2A
Location:	Chatham, VA
Schnabel Project No.:	22210031.1
Client Name:	Pittsylvania County
Ground Elevation (ft msl):	708.2
Northing:	3469256.4
Easting:	11210014.0

Boring No.: Test Interval: Test Interval: Test Date:	B-51 87.6 620.6 1/20/2023	to to	<u>97.6</u> ft, bgs 610.6 EL, ft
By:	PWA		_
Checked:	SMB		_

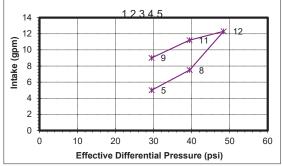
METHOD REFERENCE: Ground Water Manual, US Bureau of Reclamation, 1995, Chapter 10 TEST DATA (Enter data in shaded, underlined cells. Other cells are calculated from data cells):

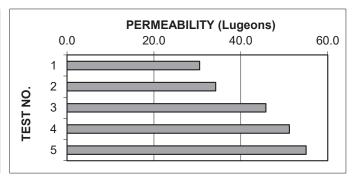
Results of Permeability Calculations Multiple Step Test

	Flow, Q	Pressure (psi)			Hydraulic	Hydraulic	
Step	(gpm)	Gauge	Effective	Lugeons	Conductivity (ft/sec)	Conductivity (cm/sec)	
1	5	9	29	31	1.1E-05	3.5E-04	
2	8	19	39	34	1.3E-05	3.9E-04	
3	12	28	48	46	1.7E-05	5.2E-04	
4	11	19	39	51	1.9E-05	5.9E-04	
5	9	9	29	55	2.1E-05	6.3E-04	
AVERAGE	9	17	37	43	1.6E-05	5.0E-04	
VALUE (Maximum*)	12	28	48	55	2.1E-05	6.3E-04	


*Unless otherwise selected

Rock Description of Tested Interval:


D1/D2, Gneiss, Schist, slightly to moderately weathered, slightly to moderately fractured, RQD %: 55 to 80, REC %: 93 to 100


Test Interpretation

Fracture filling washed out or fractures dilated and were propped open during test. Selected permeability is from the step with maximum permeability.

Wash Out

WATER PRESSURE TEST (PACKER TEST) SHEET 1, FIELD DATA

Project:	Cherrystone Creek Dam 2A	Boring No.:	B-652	_		
Location:	Chatham, VA	Hole Angle:	С	degrees fr	om ver	tical
Schnabel Project No.:	22210031.100	Test Interval:	42.6	to	52.6	ft, in hole
Client Name:	Pittsylvania County	Test Interval:	42.6	to	52.6	ft, bgs
		Test Interval:	602.8	to	592.8	EL, ft
Ground Elevation (ft msl):	645.4	Test Date:	1/26/2023			
Northing:	3469270.9	By:	EU		Date:	1/26/2023
Easting:	11210183.1	Checked:	SMB		Date:	3/24/2023
TEST METHOD: Single or [Double Packer Method using Multiple F	Pressure Tests		Calc Sheet \	/orgion:	2018-08-06a
	round Water Manual, US Bureau of Re		5 Chanter		/ 0131011.	2010-00-004
	shaded, underlined cells. Other cells ar					
Rock Type:	Gneiss	e calculated no	Rock Unit	,		
Rock Weathering:	fresh to slightly weathered		RQD %:	73	to	90
Rock Fracturing:	slightly to moderately fractured		REC %:	96	to	100
Source of test water and cla		Cherrystone			10	100
Method of cleaning hole price		Flushed from		<u>ai</u>		
Method of checking flow me	•					
Drilling Fluid (water or type of		5 gallon buck Water	el			
Packer Brand:	- · · ·	Packer Model:	U			
	Aaardvark Wireline Packer			Endi	200	noi
Packer Inflation Pressure:	Start of testing:		psi	End:	200	psi
Packer Length (length of bla	,		feet			
Method: Single (1) or double		2	-			
	er, Method 1 (single packer test), A ₁ :		feet			
-	lethod 2 (double packer test), A ₂ :		feet			
Depth of hole at time of test	:			below grour		
Depth to top of rock (thickne	ess of soil interval), R_{d:}	37.6	vertical fee	et below gro	ound su	rface
Diameter of borehole, d :		3.0	inches	0.25	feet	
Radius of the borehole, <i>r:</i>		0.13	feet			
Depth to water table (thickne	ess of unsaturated material above					
water table), U :		7.0	feet	3.0	psi	
Depth to top of impermeable	e zone:	200.0	feet			
Estimated porosity of test se	ection:	5%	-			
	erial above a relatively impermeable		-			
bed, S :		193.0	feet			
	(bottom of upper packer), h _t :	42.6	feet bgs	18.4	psi	
Depth to bottom of test sect	ion (top of lower packer if double					
packer used, bottom of hole	for a single packer, D):	52.6	feet bgs			
Is test section above or belo		below				
For tests above water table	determine h ₁ , the distance from					
gauge to bottom of test inter	val:		feet		psi	
For tests below the water ta	ble determine h 1, the distance					
between the gauge and the		8.0	feet	3.5	psi	
Friction Loss Parameters						
	ead loss occurs (distance from gauge					
to the bottom of the top pacl		68.6	feet			
	ove the ground surface at boring:	1.0	feet ags			
• • • •	essure gauge to top of pipe in boring:	25.0	feet			
Number of 90° Elbows dowr		1	-			
Number of 45° elbows down		0	-			
	c, rubber hose, black plastic):	steel	-			
Pipe Outside Diameter (mea		2.75	inches			
Pipe Inside Diameter (meas		2.380	inches			
Pipe Nominal Diameter (app	• •	2.00	inches			
Pipe Schedule:		NQ Rods	-			
Approximate Water Temper	ature	40	°F			
, pproximate mater remper		70	- '			

WATER PRESSURE TEST (PACKER TEST) SHEET 1b, FIELD TEST PARAMETERS

TEST LIMITATIONS		
Have the limitations of the test and calculation been met? The value of S must be greater or equal to 5A	True	
The value A/d must be less than 5.	True	
Packer length must be >=10r for double packer setup	True	
CALCULATE WATER INJECTION PRESSURES TO BE APPLIED	DURING THE TEST	
Estimated Confining Pressure, per foot of material		
Maximum pressure per foot of rock, p_{Rmax}:	<u> </u>	2.3 ft of water
Maximum allowable pressure per foot of soil, p_{smax}:	0.5 psi/ft	1.2 ft of water
For reference, the pressure at the center of the test interval applied		
the head of water standing in pipe:	21.0 psi	48.6 ft of water
Target maximum <u>effective pressure</u> for this test (P _{t max}):		
$(R_{d} * P_{Smax}) + [(h_{t} - R_{d})^* P_{Rmax})]$	28.8 psi	28.8 psi
Maximum Allowable Water Injection Gauge Pressure (pressure		
Estimated maximum flow for this test:	<u> </u>	
Estimated frictional pressure loss (\mathbf{P}_{L}) for this test:	0.0 psi	0.0 ft of water
Maximum Allowable <u>Gauge Pressure</u> for this test: Ptmax - h ₁	25 psi	25.3 psi
Percent of Maximum Allowable Pressure to be Applied	80%	
Summary of Target Water Injection Pressures - Suggested Val		
Step 1, Minimum Pressure, approx 33% of maximum	7 psi	
Step 2, approx 67% of maximum	14 psi	
Step 3, Maximum Pressure Step 4, approx 67% of maximum	20 psi 14 psi	
Step 5, approx 33% of maximum	7 psi	
Proposed Packer Inflation Pressure at tank gauge (for gas):	109 psi	
Maximum Packer Inflation Pressure at tank gauge (for gas):	565 psi	DO NOT EXCEED
Summary of Target Water Injection Pressures - Suggested Val		sure
Step 1, approx 33% of maximum	8 psi	
Step 2, approx 67% of maximum	15 psi	
Step 3, Maximum Effective Pressure	23 psi	
Step 4, approx 67% of maximum	15 psi	44.0
Step 5, approx 33% of maximum	8 psi	44.0
AARDVARK, QSP, & GEOPRO BIMBAR PACKERS - MAX. PAC	KER INFLATION PRESSU	IRE TO BE APPLIED
USE GEOPRO CALCULATION (factors in water level)	at af watar) + Or + Drift 4	1 100
Calculated Packer Inflation Pressure for test: G = [(Dp x psi/for Unconfined packer pressure rating (Sp) for the borehole size (see		
Dp = Depth to top of test section or bottom of top packer (feet		<u>60</u> psi 42.6 ft
Pp = Injection pump pressure (psi) or maximum proposed gau		20 psi
Confined pressure rating for borehole size (from chart, references t	ab):	550 psi
Max packer inflation pressure (Confined packer pressure + [(Dp - D		565 psi
Dw = Depth to static water level in borehole (feet)		7 ft
Does calculated packer inflation pressure (G) exceed calculated max If yes, then packer may fail during test.	packer inflation pressure?	NO

WATER PRESSURE (PACKER) TEST SHEET 2, FIELD DATA

Project:		Cherrystone	Creek Dam	2A	Boring No	.:	B-652	•		
	Location: Chatham, VA			Test Interv		42.6	to	52.6	bgs	
Schnabel	Project No		22210031.1	0	Test Interv		602.8	to		EL
Client Nan		 Pittsylvania		0	Test Date: 1/26/2023			552.0		
	EU	FillSylvaria	Date:	1/26/2023	Checked:		1/20/2023		3/24/2023	
By:	EU		Dale.	1/20/2023	Checkeu.	SIVID		Dale.	5/24/2025	
Time at st	art of setu	p:	11:00 AM		Time at er	nd of tear o	lown:	1:00 PM		
Time at st	art of test:		12:06 PM		Time at er	nd of test:		12:50 PM		
0					0		Flow			
Gauge	Elapsed	Flow Rate	Flow Vol	Flow	Gauge	Elapsed	Rate at	Flow Vol at	Flow Rate	
Pressure	Time	at Gauge	at Gauge	Rate	Pressure	Time	Gauge	Gauge	(gpm)	
(h ₂ , psi)	(min)	(gpm)	(gal)	(gpm)	(h ₂ , psi)	(min)	(gpm)	(gal)		
Step 1	Start Time	e:	12:15 PM		Step 3	Start Time	e:	12:33 PM		
7	0		338.9		22	0		356.6		
7	1		339.77	0.9	22	1		358.21	1.6	
7	2		340.7	1.0	22	2		359.79	1.6	
7	3		341.7	1.0	22	3		361.35	1.6	
7	4		342.5	0.8	22	4		362.82	1.5	
7	5		343.6	1.0	22	5		364.32	1.5	
7	6		344.3	0.8	22	6		365.8	1.5	
/	7		345.28	1.0	22	7		367.3	1.5	
/	8				22	8				
	9				22 22	9 10				
	10 11				22	10				
	12				22	11				
	12					12				
	13					13				
	15					15				
	10		Average	0.9		10		Average	1.5	
	Sele	cted stabilize		0.9		Selec	ted stabiliz	zed flow rate	1.5	
S		essure for c		7	S			calculations	22	
04.0	Otant Time		12:24 PM		04.0			12:41 PM	1	
Step 2 15	Start Time 0	9:	346.91		Step 4 15	Start Time	9:	369.3		
15	1		348.15	1.2	15	1		370.52	1.2	
15	2		349.27	1.2	15	2		371.65	1.2	
15	3		350.38	1.1	15			372.81	1.1	
15	4		351.49	1.1	15	4		374	1.2	
15	5		352.67	1.2	15	5		375.2	1.2	
15	6		353.8	1.1		-		Average	1.2	
15	7		354.9	1.1		Selec	ted stabiliz	zed flow rate	1.2	
	8				S			calculations	15	
	9					•				
	10				Step 5	Start Time	e:	12:47 PM		
	11				7	0		376.85		
	12				7	1		377.81	1.0	
	13				7	2		378.74	0.9	
	14				7	3		379.58	0.8	
	15				7	4		380.53	0.9	
			Average	1.1	/	5		381.45	0.9	
~		cted stabilize		1.1					0.9	
		essure for c		15	Selected stabilized flow rate Selected pressure for calculations				0.9	
Comments	5.				50	elected pre	essure for	calculations	/	

WATER PRESSURE TEST (PACKER TEST) SHEET 3, CALCULATIONS

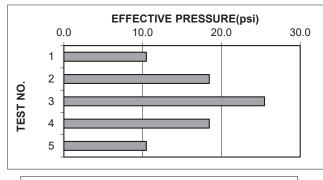
Project:	Cherrystone Creek Dam 2A
Location:	Chatham, VA
Schnabel Project No.:	22210031.1
Client Name:	Pittsylvania County
Ground Elevation (ft msl):	645.4
Northing:	3469270.855
Easting:	11210183.119

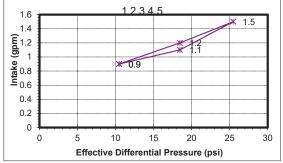
Boring No.: Test Interval: Test Interval: Test Date:	B-652 42.6 602.8 1/26/2023	to to	<u>52.6</u> ft, bgs 592.8 EL, ft
By:	EU		_
Checked:	SMB		
			-

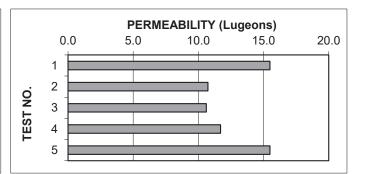
METHOD REFERENCE: Ground Water Manual, US Bureau of Reclamation, 1995, Chapter 10 TEST DATA (Enter data in shaded, underlined cells. Other cells are calculated from data cells):

Results of Permeability Calculations Multiple Step Test

	Flow, Q	Pressu	re (psi)		Hydraulic	Hydraulic	
Step	(gpm)	Gauge	Effective	Lugeons	Conductivity (ft/sec)	Conductivity (cm/sec)	
1	0.9	7	10	15	6.0E-06	1.8E-04	
2	1.1	15	18	11	4.2E-06	1.3E-04	
3	1.5	22	25	11	4.1E-06	1.3E-04	
4	1.2	15	18	12	4.6E-06	1.4E-04	
5	0.9	7	10	15	6.0E-06	1.8E-04	
AVERAGE	1.12	13	17	13	5.0E-06	1.5E-04	
VALUE (Maximum*)	1.5	22	25	15	6.0E-06	1.8E-04	


*Unless otherwise selected


Rock Description of Tested Interval:


D2, Gneiss, fresh to slightly weathered, slightly to moderately fractured, RQD %: 73 to 90, REC %: 96 to 100

Test Interpretation Turbulent

Turbulent flow through fractures, likely the result of fast moving water through wider fractures. Selected permeability is from the step with maximum permeability.

WATER PRESSURE TEST (PACKER TEST) SHEET 1, FIELD DATA

Project:	Cherrystone Creek Dam 2A	Boring No.:	B-652	_		
Location:	Chatham, VA	Hole Angle:		degrees fr	rom ver	tical
Schnabel Project No.:	22210031.100	Test Interval:	52.6	to	62.6	ft, in hole
Client Name:	Pittsylvania County	Test Interval:	52.6	to	62.6	ft, bgs
		Test Interval:	592.8	to	582.8	EL, ft
Ground Elevation (ft msl):	645.4	Test Date:	1/26/2023			
Northing:	3469270.9	By:	EU		Date:	1/26/2023
Easting:	11210183.1	Checked:	SMB		Date:	3/24/2023
TEST METHOD. Single or [Double Packer Method using Multiple P	ressure Tests		Calc Sheet \	/ersion:	2018-08-06a
0	round Water Manual, US Bureau of Re		5. Chapter 2		v oroioni.	2010 00 000
	shaded, underlined cells. Other cells ar					
Rock Type:	Gneiss	o calculated no	Rock Unit:	,		
Rock Weathering:	fresh to slightly weathered		RQD %:	81	to	100
Rock Fracturing:	slightly to moderately fractured		REC %:	100	to	100
Source of test water and cla		Cherrystone			10	100
Method of cleaning hole price	•	Flushed from		<u>ai</u>		
e .						
Method of checking flow me		5 gallon buck	el			
Drilling Fluid (water or type of	e ,	Water				
Packer Brand:		Packer Model:			000	
Packer Inflation Pressure:	Start of testing:		psi	End:	200	psi
Packer Length (length of bla	,		feet			
Method: Single (1) or double	e (2) packer (Enter 1 or 2):	1	_			
Interval below base of packe	er, Method 1 (single packer test), A ₁ :	10.0	feet			
Interval between packers, N	lethod 2 (double packer test), A ₂ :		feet			
Depth of hole at time of test	, _	62.6	vertical ft b	below grour	nd surfa	ce
Depth to top of rock (thickne				et below gro		
Diameter of borehole, d :			inches	0.25		naoc
Radius of the borehole, <i>r</i> :			feet	0.25	IEEL	
	ess of unsaturated material above	0.15	leet			
water table), U :		7.0	feet	3.0	nsi	
Depth to top of impermeable	2000.	200.0		0.0	p31	
Estimated porosity of test se		5%	-			
	erial above a relatively impermeable	570	-			
bed, S :		193.0	feet			
	(bottom of upper peoker) b			22.0	nai	
	(bottom of upper packer), \mathbf{h}_t :	52.0	feet bgs	22.8	psi	
•	ion (top of lower packer if double	00.0	c			
packer used, bottom of hole	e . ,		feet bgs			
Is test section above or belo		below				
	determine h ₁ , the distance from					
gauge to bottom of test inter			feet		psi	
For tests below the water ta	ble determine h 1, the distance	8.0				
between the gauge and the	water table:	0.0	feet	3.5	psi	
Friction Loss Parameters						
Length of pipe over which he	ead loss occurs (distance from gauge					
to the bottom of the top pac	ker):	78.6	feet			
Height of pressure gauge at	pove the ground surface at boring:	1.0	feet ags			
	essure gauge to top of pipe in boring:	25.0	feet			
Number of 90° Elbows dowr		1	-			
Number of 45° elbows dowr		0	-			
	rc, rubber hose, black plastic):	steel	-			
Pipe Outside Diameter (mea	• •	2.75	inches			
Pipe Inside Diameter (meas		2.380	inches			
Pipe Nominal Diameter (meas	• •	2.00	inches			
	\mathcal{F}	NQ Rods	-			
Pipe Schedule:	a turo		• F			
Approximate Water Temper	aure	40	°F			

WATER PRESSURE TEST (PACKER TEST) SHEET 1b, FIELD TEST PARAMETERS

TEST LIMITATIONS Have the limitations of the test and calculation been met? The value of S must be greater or equal to 5A The value A/d must be less than 5. Packer length must be >=10r for double packer setup CALCULATE WATER INJECTION PRESSURES TO BE APPLIE	True True -	
Estimated Confining Pressure, per foot of material	1 poi/ft	2.3 ft of water
Maximum pressure per foot of rock, p_{Rmax}: Maximum allowable pressure per foot of soil, p_{Smax}:	1 psi/ft 0.5 psi/ft	1.2 ft of water
For reference, the pressure at the center of the test interval applie		1.2 It of water
the head of water standing in pipe:	25.4 psi	58.6 ft of water
	20.1 por	
Target maximum <u>effective pressure</u> for this test ($P_{t max}$):		
$(\mathbf{R}_{d} * \mathbf{P}_{Smax}) + [(\mathbf{h}_{t} - \mathbf{R}_{d}) * \mathbf{P}_{Rmax})]$	38.8 psi	38.8 psi
Maximum Allowable Water Injection Gauge Pressure (pressur	re at gauge during tost)	
Estimated maximum flow for this test:	1 gpm	
Estimated frictional pressure loss (P_1) for this test:	0.0 psi	0.0 ft of water
Maximum Allowable Gauge Pressure for this test:	35 psi	35.3 psi
Ptmax - h_1	00 psi	00.0 psi
Percent of Maximum Allowable Pressure to be Applied	80%	
Summary of Target Water Injection Pressures - Suggested Va	luce for GAUGE Prossure	
Step 1, Minimum Pressure, approx 33% of maximum	9 psi	
Step 2, approx 67% of maximum	19 psi	
Step 3, Maximum Pressure	28 psi	
Step 4, approx 67% of maximum	19 psi	
Step 5, approx 33% of maximum	9 psi	
Proposed Packer Inflation Pressure at tank gauge (for gas):	123 psi	
Maximum Packer Inflation Pressure at tank gauge (for gas):	570 psi	DO NOT EXCEED
Summary of Target Water Injection Pressures - Suggested Va	lues for EFFECTIVE Pressu	re
Step 1, approx 33% of maximum	10 psi	
Step 2, approx 67% of maximum	21 psi	
Step 3, Maximum Effective Pressure	31 psi	
Step 4, approx 67% of maximum	21 psi	
Step 5, approx 33% of maximum	10 psi	44.00
	•	
AARDVARK, QSP, & GEOPRO BIMBAR PACKERS - MAX. PAC	KER INFLATION PRESSUR	E TO BE APPLIED
USE GEOPRO CALCULATION (factors in water level) Calculated Packer Inflation Pressure for test: G = [(Dp x psi/fe	pot of water) + Sp + Dp] * 1.1	123 psi
Unconfined packer pressure rating (Sp) for the borehole size (see		60 psi
Dp = Depth to top of test section or bottom of top packer (fee		52.6 ft
Pp = Injection pump pressure (psi) or maximum proposed ga		28 psi
		poi
Confined pressure rating for borehole size (from chart, references		<u>550</u> psi
Max packer inflation pressure (Confined packer pressure + [(Dp -	Dw) * 0.433])	570 psi
Dw = Depth to static water level in borehole (feet)		7 ft
Does calculated packer inflation pressure (G) exceed calculated max	x packer inflation pressure?	NO

If yes, then packer may fail during test.

WATER PRESSURE (PACKER) TEST SHEET 2, FIELD DATA

		<u> </u>	<u> </u>					<u> </u>		
Project:			Creek Dam	2A	Boring No		B-652 52.6	to		
Location: Chatham, VA			Test Interv	62.6	_bgs					
Schnabel	Project No).:	22210031.1	0	Test Interv	Test Interval: 592.8 to			582.8	EL
Client Nan	ne:	Pittsylvania	County		Test Date: 1/26/2023					
By:	EU		Date:	1/26/2023	Checked:	SMB		Date:	3/24/2023	j
								-		
Time at st	art of setu	D:	8:40 AM		Time at er	nd of tear o	down:	11:00 AM		1
Time at st			10:25 AM		Time at er	nd of test [.]		10:52 AM		1
			10.20740					10:02 / 10		_
Gauge	Elapsed	Flow Rate	Flow Vol	Flow	Gauge	Elapsed	Flow	Flow Vol at]
Pressure	Time			Rate	Pressure	Time	Rate at		Flow Rate	÷
		at Gauge	at Gauge				Gauge	Gauge	(gpm)	
(h ₂ , psi)	(min)	(gpm)	(gal)	(gpm)	(h ₂ , psi)	(min)	(gpm)	(gal)		
Stop 1	Start Time		10:25 AM		Stop 2	Stort Time		10:38 AM		-
Step 1 10		ə.	323.5		Step 3 30	Start Time	ə.	326.6		٦
10	1		323.76	0.3	30	1		326.85	0.3	2
10	2		323.91	0.3	30	2		327.1	0.3	
10	3		324.09	0.2	30	3		327.39	0.3	
10	4		324.3	0.2	30	4		327.65	0.3	
10	5		324.48	0.2	30	5		327.03	0.3	
10	6		024.40	0.2	30	6		021.02	0.5	4
10	7				30	7				-
10	8				30	8				-
10	9				30	9				-
	10				30	10				-
	11				30 11				-	
	12				30	12				-
	13					13				-
	14					14				-
	15					15				1
			Average	0.2		-		Average	0.3	3
	Sele	cted stabilize	ed flow rate	0.2		Selec	cted stabiliz	ed flow rate	0.3	
S		essure for c		10	S			calculations	30	ที
										-
	Start Time	ə:	10:32 AM			Start Time		10:44 AM		-
20	0		324.99		20	0		328.05		
20	1		325.33	0.3	20	1		328.25	0.2	
20	2		325.52	0.2	20	2		328.46	0.2	-
20	3		325.85	0.3	20	3		328.71	0.3	5
20	4		326.12	0.3	20	4				4
20	5		326.37	0.3	20	5		-		-
20	6					<u> </u>		Average	0.2	
20	7							ed flow rate	0.2	
	8				S	elected pre	essure for o	calculations	20	<u>'</u>
	9					o . .			1	
	10				Step 5	Start Time		10:47 AM		7
	11				10	0		328.73		4
	12				10	1		328.9	0.2	
	13 14				10 10	2		329.04 329.3	0.1	
	14							329.3	0.3	
	10		Average	0.0	10 10	45		329.39	0.1	
	Solo	cted stabilize	Average	0.3	10	5			0.1	
c		cted stabilize		20		Solor	stad stabili-	Average ed flow rate	0.1	
Comment		ESSULE IOL C		20	C.				10	
Comments	5.				3	elected pre		calculations	10	<u>'</u>

WATER PRESSURE TEST (PACKER TEST) SHEET 3, CALCULATIONS

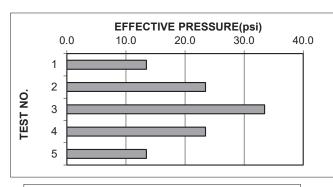
Project:	Cherrystone Creek Dam 2A
Location:	Chatham, VA
Schnabel Project No.:	22210031.1
Client Name:	Pittsylvania County
Ground Elevation (ft msl):	645.4
Northing:	3469270.855
Easting:	11210183.119

Boring No.: Test Interval: Test Interval: Test Date: By: Checked:	B-652 52.6 592.8 1/26/2023 EU SMB	to to	<u>62.6</u> ft, bg 582.8 EL, ft
By:	EU		•

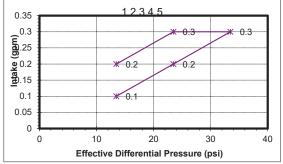
METHOD REFERENCE: Ground Water Manual, US Bureau of Reclamation, 1995, Chapter 10 TEST DATA (Enter data in shaded, underlined cells. Other cells are calculated from data cells):

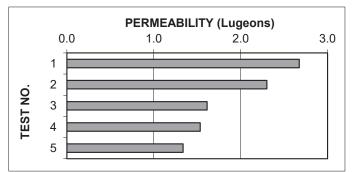
Results of Permeability Calculations Multiple Step Test

	Flow, Q	Pressure (psi)			Hydraulic	Hydraulic	
Step	(gpm)	Gauge	Effective	Lugeons	Conductivity (ft/sec)	Conductivity (cm/sec)	
1	0.2	10	13	3	1.0E-06	3.1E-05	
2	0.3	20	23	2	8.7E-07	2.6E-05	
3	0.3	30	33	2	6.1E-07	1.8E-05	
4	0.2	20	23	2	5.8E-07	1.8E-05	
5	0.1	10	13	1	5.0E-07	1.5E-05	
AVERAGE	0.2	18	21	2	7.1E-07	2.2E-05	
VALUE (Maximum*)	0.3	30	33	3	1.0E-06	3.1E-05	


*Unless otherwise selected

Rock Description of Tested Interval:


D2, Gneiss, fresh to slightly weathered, slightly to moderately fractured, RQD %: 81 to 100, REC %: 100 to 100


Test Interpretation

Fractures are being filled and clogged. Selected permeability is from the step with maximum permeability.

Fracture Filling

APPENDIX F

SOIL LABORATORY TEST DATA

MOISTURE CONTENT

ASTM D 2216-19

Client:	Schnabel Engineering, Inc.
Client Reference:	Cherrystone Dam 2A
Project No.:	R-2023-070-001

Lab ID: Boring No.: Depth (ft): Sample No.:	001 B-51A 10-12 UD-01	002 B-51A 56-58 UD-03	003 B651B 16-18 UD-02	004 B-651A 28-30 UD-01	005 B-751 12-14 UD-02	
Tare Number Wt. of Tare & Wet Sample (g) Wt. of Tare & Dry Sample (g) Weight of Tare (g) Weight of Water (g) Weight of Dry Sample (g)	908 297.05 270.75 102.07 26.30 168.68	446 453.28 390.52 99.11 62.76 291.41	404 423.68 383.55 143.05 40.13 240.50	440 315.56 280.71 99.40 34.85 181.31	458 501.44 461.35 145.92 40.09 315.43	
Water Content (%)	15.6	21.5	16.7	19.2	12.7	
Lab ID Boring No. Depth (ft) Sample No. Tare Number	006 B-51 4-6 S-03 709	007 B-51 36-38 S-19 443	008 B-51 46-48 S-24 432	009 B-51 48-50 S-25 AM	010 B-51 50-52 S-26 B2	
Wt. of Tare & Wet Sample (g) Wt. of Tare & Dry Sample (g) Weight of Tare (g) Weight of Water (g) Weight of Dry Sample (g)	288.73 253.26 90.58 35.47 162.68	349.13 319.78 99.22 29.35 220.56	411.81 363.51 99.30 48.30 264.21	64.30 53.50 15.33 10.80 38.17	67.51 59.36 15.41 8.15 43.95	
Water Content (%)	21.8	13.3	18.3	28.3	18.5	
Notes :						
Tested By RFF page 1 of 1 DCN: CT-S1 DATE: 3/18/13 REVIS	Date	3/7/23	Checked By	AES	Date	3/7/23

MOISTURE CONTENT

ASTM D 2216-19

Client:	Schnabel Engineering, Inc.
Client Reference:	Cherrystone Dam 2A
Project No.:	R-2023-070-001

Lab ID: Boring No.: Depth (ft): Sample No.:	011 B-51 52-54 S-27	012 B-51 54-56 S-28	013 B-51 66-68 S-34	014 B-651 6-8 S-04	015 B-651 22-24 S-12	
Tare Number Wt. of Tare & Wet Sample (g) Wt. of Tare & Dry Sample (g) Weight of Tare (g) Weight of Water (g) Weight of Dry Sample (g)	V2 70.31 59.97 15.60 10.34 44.37	466 210.92 196.80 143.87 14.12 52.93	477 433.70 411.93 99.56 21.77 312.37	723 270.50 238.12 90.10 32.38 148.02	745 300.91 263.14 141.96 37.77 121.18	
Water Content (%)	23.3	26.7	7.0	21.9	31.2	
Lab ID Boring No. Depth (ft) Sample No. Tare Number Wt. of Tare & Wet Sample (g) Wt. of Tare & Dry Sample (g) Weight of Tare (g) Weight of Water (g) Weight of Dry Sample (g)	016 B-651 36-38 S-19 426 239.26 186.21 99.32 53.05 86.89	017 B-651 42-44 S-22 483 329.61 310.22 97.75 19.39 212.47	018 B-652 8-10 S-05 704 400.24 333.89 89.60 66.35 244.29	019 B-652 18-20 S-10 430 363.72 310.65 99.78 53.07 210.87	020 B-751 4-6 S-03 494 371.80 327.88 99.06 43.92 228.82	
Water Content (%)	61.1	9.1	27.2	25.2	19.2	
Notes :	01.1	5.1	21.2	23.2	13.2	
Tested By RFF page 1 of 1 DCN: CT-S1 DATE: 3/18/13 REVIS	Date	3/7/23	Checked By	AES	Date	3/7/23

MOISTURE CONTENT

ASTM D 2216-19

Client:	Schnabel Engineering, Inc.
Client Reference:	Cherrystone Dam 2A
Project No.:	R-2023-070-001

Lab ID:	021	022
Boring No.:	B-751	B-751
Depth (ft):	24-26	30-32
Sample No.:	S-11	S-14
Tare Number	474	368
Wt. of Tare & Wet Sample (g)	357.52	263.52
Wt. of Tare & Dry Sample (g)	306.28	238.29
Weight of Tare (g)	98.41	110.83
Weight of Water (g)	51.24	25.23
Weight of Dry Sample (g)	207.87	127.46
Water Content (%)	24.7	19.8

Notes :

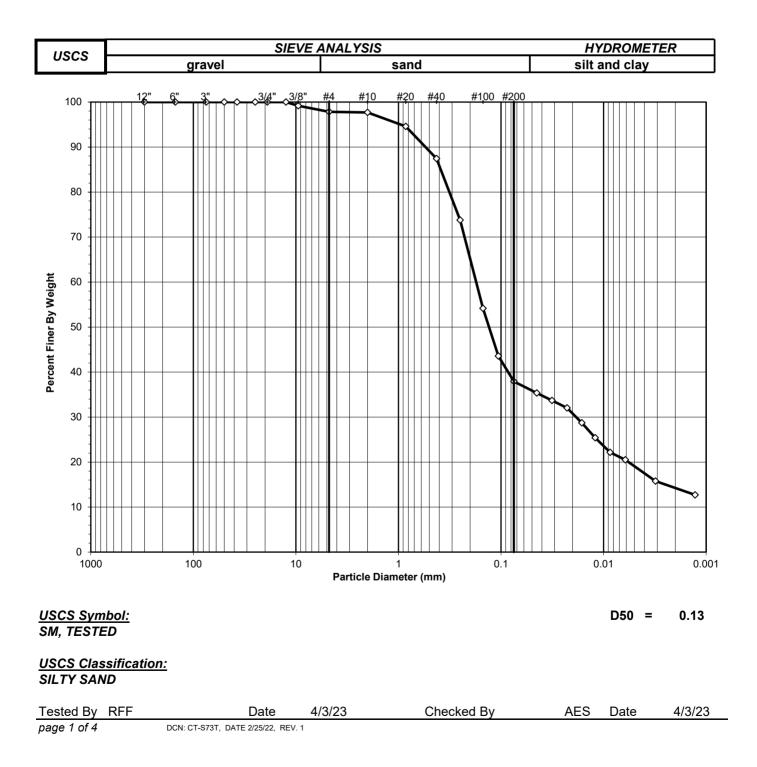
Tested By RFF Date

Checked By

AES

Date 3/7/23

page 1 of 1 DCN: CT-S1 DATE: 3/18/13 REVISION: 4


3/7/23

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-001 Boring No.: Depth (ft): Sample No.: Soil Color: B-51A 10-12 UD-01 Orange Brown

WASH SIEVE ANALYSIS

ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-001

Boring No.: Depth (ft): Sample No.: Soil Color: B-51A 10-12 UD-01 Orange Brown

Moisture (Content of Pass	ing 3/4" Material		Mois	ture Content of Retained	3/4" Material	
		0					
Tare No.:				908	Tare No.:		NA
	e & Wet Sampl			97.05	Weight of Tare & Wet Sa		NA
	e & Dry Sample	e (g):		70.75	Weight of Tare & Dry Sar	mple (g):	NA
Weight of	Tare (g):			02.07	Weight of Tare (g):		NA
Weight of	Water (g):			6.30	Weight of Water (g):		NA
Weight of	Dry Soil (g):		16	68.68	Weight of Dry Soil (g):		NA
Moisture	Content (%):		1	15.6	Moisture Content (%):		0.0
Dry Weigh	nt of Sample (g)	:		NA	Total Dry Weight of Sam	ple (g):	168.68
Tare No. ((Sub-Specimen))	9	908	Wet Weight of +3/4" San	nple (g):	0.00
Wt. of Tare & Wet Sub-Specimen (g):			297.05		Dry Weight of + 3/4" Sam	0.00	
Weight of Tare (g):			102.07		Dry Weight of - 3/4" Sam	168.68	
Sub-Specimen Wet Weight (g):			194.98		Dry Weight -3/4" +3/8" Sa		1.41
	-3/8" Sub-Spec		NA		Dry Weight of -3/8" Samp		167.27
	· ·	Sub-Specimen (g):	NA		J - Factor (% Finer than 3	NA	
Weight of		1 (0)		NA	J - Factor (% Finer than 3		NA
	imen -3/8" Wet	Weight (g):		NA	·		
Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
	1 0				Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100
6"	150	0.00		0.00	0.00	100.00	100
3"	75	0.00		0.00	0.00	100.00	100
2"	50	0.00	(*)	0.00	0.00	100.00	100
1 1/2"	37.5	0.00	``'	0.00	0.00	100.00	100
1"	25	0.00		0.00	0.00	100.00	100
3/4"	19	0.00		0.00	0.00	100.00	100

1"	25	0.00		0.00	0.00	100.00	100
3/4"	19	0.00		0.00	0.00	100.00	100
1/2"	12.5	0.00	(**)	0.00	0.00	100.00	100
3/8"	9.5	1.41	()	0.84	0.84	99.16	99
#4	4.75	2.27		1.35	2.18	97.82	98
#10	2	0.24		0.14	2.32	97.68	98
#20	0.85	5.21	(**)	3.09	5.41	94.59	95
#40	0.425	12.04		7.14	12.55	87.45	87
#60	0.25	23.05		13.66	26.22	73.78	74
#100	0.15	33.08		19.61	45.83	54.17	54
#140	0.106	17.87		10.59	56.42	43.58	44
#200	0.075	9.58		5.68	62.10	37.90	38
Pan	-	63.93		37.90	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	RFF	Date	4/3/23	Checked By	AES	Date	4/3/23
page 3 of 4	DCN: CT-S73T, DATE 2/25/22, REV. 1						

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

HYDROMETER ANALYSIS

ASTM D7928-21

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A	
Client Reference:	Cherrystone Dam 2A	Depth (ft):	10-12	
Project No.:	R-2023-070-001	Sample No.:	UD-01	
Lab ID:	R-2023-070-001-001	Soil Color:	Orange Brown	

Elapsed Time (min)	Reading rm	Temp. (C [°])	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm
0	NA	NA	NA	NA	NA	NA	NA
1	24.0	22.7	2.67	12.3	0.0448	93.3	35.4
2	23.0	22.7	2.67	12.5	0.0319	88.9	33.7
4	22.0	22.7	2.67	12.7	0.0227	84.5	32.0
8	20.0	22.7	2.67	13.0	0.0163	75.8	28.7
15	18.0	22.7	2.67	13.4	0.0121	67.0	25.4
30	16.0	22.8	2.64	13.8	0.0086	58.4	22.2
60	15.0	22.8	2.64	13.9	0.0061	54.1	20.5
240	12.0	23.2	2.49	14.5	0.0031	41.6	15.8
1440	10.0	23.6	2.33	14.8	0.0013	33.5	12.7

Soil Specimen Data

Tare No.:	14	Percent Finer than # 200:	37.90
Wt. of Tare & Dry Material (g):	369.94		
Weight of Tare (g):	342.84	Specific Gravity:	2.81 Measured
Weight of Deflocculant (g): Weight of Dry Material (g):	5.0 22.10		
weight of bry Material (g).	22.10		

Notes: Hydrometer test is performed on - # 200 sieve material.

Hydrometer - 152H	R- 481
Cylinder	R- 696
Thermometer	R- 350
Balance	R- 279
#200 Sieve	R- 632
Foam Inhibitor Used	No

Tested By	RFF	Date	3/24/23	Checked By	AES	Date	3/27/23
page 4 of 4							

ATTERBERG LIMITS

ASTM D 4318-17

Client: Client Reference: Project No.:	Schnabel Eng Cherrystone I R-2023-070-0	Dam 2A	1С .	:	Boring No.: Depth (ft): Sample No.	10-12 : UD-01		
Lab ID:	R-2023-070-0	01-001		Soil	Description	: ORANGE B	ROWN SILT	-
Note: The USCS syn	nbol used with th	nis test refer	rs only to	the minus N	o. 40	(Minus #40 sie	ve material, We	et Prep.)
sieve material. See th	e "Sieve and Hy	drometer A	nalysis" g	graph page fo	or the compl	ete material d	escription .	
As Receiv	/ed Moisture	Content			Liqu	uid Limit Te	est	
AS	STM D2216-19			1	2	3	М	
Tare Number:		908		W	В	A-L	U	
Wt. of Tare & Wet S	ample (a):	297.0	5	29.28	25.59	30.79	L	
Wt. of Tare & Dry Sa		270.7	5	25.60	22.84	26.70	т	
Weight of Tare (g):	1 (0)	102.0	7	15.05	15.10	15.48	I	
Weight of Water (g):		26.3		3.7	2.8	4.1	Р	
Weight of Dry Samp	e (a):	168.7		10.6	7.7	11.2	Ō	
Was As Received M		Yes					Ī	
Moisture Content (%		15.6		34.9	35.5	36.5	Ν	
Number of Blows:		10.0		28	19	15	т	
					10	10	•	
Plastic Limit Tes	st	1	2	Range		Test Resu	ults	
Tare Number:		E	B4			Liquid Limi	t (%):	35
Wt. of Tare & Wet S	ample (g):	22.34	23.78			-		
Wt. of Tare & Dry Sa	imple (g):	20.65	21.82			Plastic Lim	it (%):	31
Weight of Tare (g):		15.18	15.42					
Weight of Water (g):		1.7	2.0			Plasticity Ir	ndex (%):	4
Weight of Dry Samp	e (g):	5.5	6.4				. ,	
Moisture Content (%		30.9	30.6	0.3		USCS Sym	bol:	ML
Note: The acceptable	•	vo Moisture	Conten	ts is ±	0.84			
	Flow Curve				P	lasticity Cha	rt	
60				<u></u>				
				60				
55				-				
				50		/		
50	+ + + + + + + + + + + + + + + + + + + +			-	CL	, / C	н 🖊	
8				<u>8</u> 40				
l l l				de				
A0 Anter Content 40 Anter 20 A				20 000 000 000 000 000 000 000 000 000				
		\otimes		icit	, pr		MH	
35 A at				20	/			
30								
25				10				_
23								
20								
1	10 Number of Blow	vs	100	0 V 0 CL- ML	20 4	40 60 quid Limit (%)	80	100
Tested By MPS	Date	4/1/23	Chec	cked By	AES	Date 4	4/3/23	

SPECIFIC GRAVITY

AASHTO T-100-15

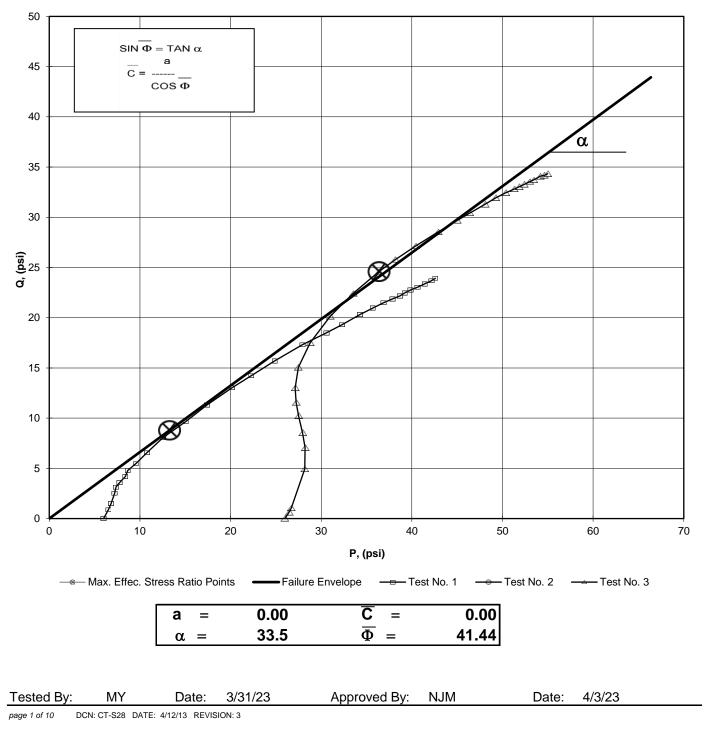
Client:	Schnabel Engineering, Inc.	Boring No.: B-51A
Client Reference:	Cherrystone Dam 2A	Depth (ft): 10-12
Project No.:	R-2023-069-001	Sample No.: UD-01
Lab ID:	R-2023-069-001-001	Visual Description: Orange Brown Silty Sand

(MInus No.4 sieve material, oven dried)

Replicate Number	1	2
Pycnometer ID:	R 716	R 717
Weight of Pycnometer & Soil & Water (g):	687.96	686.49
Temperature (°C):	24.2	24.1
Weight of Pycnometer & Water (g):	652.07	650.68
Tare Number:	716	717
Weight of Tare & Dry Soil (g):	209.87	208.45
Weight of Tare (g):	154.2	152.76
Weight of Dry Soil (g):	55.67	55.69
Specific Gravity of Soil @ Measured Temperature:	2.815	2.802
Specific Gravity of Water @ Measured Temperature:	0.99725	0.99727
Conversion Factor for Measured Temperature:	0.99905	0.99907
Specific Gravity @ 20° Celsius:	2.817	2.804

Average Specific Gravity @ 20° Celsius

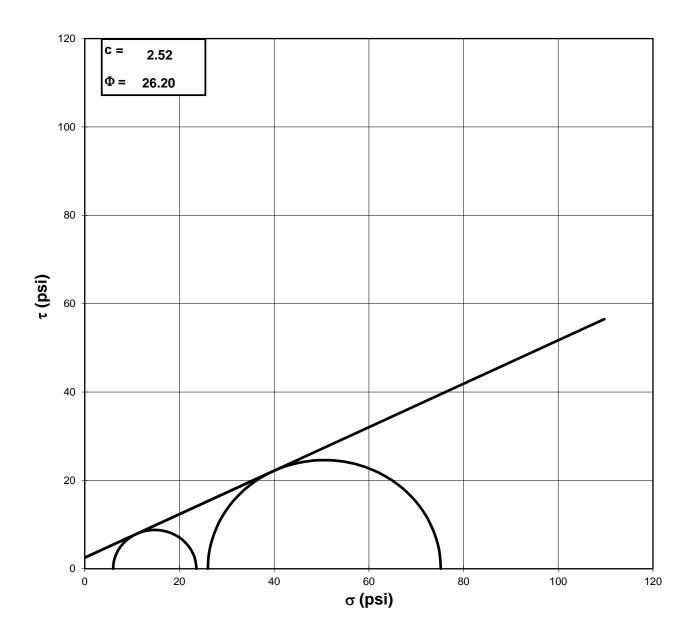
2.81


Tested By	RFF	Date	4/3/23	Checked By	GEM	Date	4/3/23
-----------	-----	------	--------	------------	-----	------	--------

page 1 of 1 DCN: CT-S5 DATE: 3/26/18 REVISION: 21

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Reference:	Cherrystone Dam 2A	Depth (ft):	10-12
Project No.: Lab ID:	R-2023-070-001 R-2023-070-001-001	Sample No.:	UD-01

Consolidated Undrained Triaxial Test with Pore Pressure


2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

MOHR TOTAL STRENGTH ENVELOPE

ASTM D4767-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Reference:	Cherrystone Dam 2A	Depth (ft):	10-12
Project No.:	R-2023-070-001	Sample No.:	UD-01
Lab ID:	R-2023-070-001-001		
Visual Description:	Orange Brown Silt (Undisturbed)		

Failure Based on Maximum Effective Principal Stress Ratio

NOTE: GRAPH NOT TO SCALE

 Tested By:
 MY
 Date:
 3/31/23
 Approved By:
 NJM
 Date:
 4/3/23

 page 2 of 10
 DCN: CT-S28
 DATE:
 4/12/13
 REVISION: 3
 Date:
 4/3/23

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

ASTM D4767-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Reference:	Cherrystone Dam 2A	Depth (ft):	10-12
Project No.:	R-2023-070-001	Sample No.:	UD-01
Lab ID:	R-2023-070-001-001		

Visual Description:

Pore Pressure Response (%) Orange Brown Silt (Undisturbed)

98

0	
1	
66.0	
60.0	
6.0	
	60.0

INITIAL SAMPLE DIMENSIONS (in)						
Length 1:	5.949	Diameter 1:	2.810			
Length 2:	5.966	Diameter 2:	2.820			
Length 3:	6.004	Diameter 3:	2.845			
Avg. Length:	5.973	Avg. Diam.:	2.825			

VOLUME CHANGE

Initial Burette Reading (ml)	24.0
Final Burette Reading (ml)	15.7
Final Change (ml)	8.3

MAXIMUM OBLIQUITY POINTS

			Initial Dial Reading (mil)	232
P	=	13.27	Dial Reading After Saturation (mil)	231
Q	=	8.78	Dial Reading After Consolidation (mil)	265

	LOAD		DE	FORMAT	ION	PORE PRESSU	RE	
	(LB)			(IN)		(PSI)		
	22.8			0.000		60.0		
	34.0			0.001		60.4		
	41.7			0.002		60.7		
	54.3			0.009		61.3		
	61.8			0.015		61.8		
	67.5			0.021		61.8		
	75.3			0.030		61.8		
	82.8			0.039		62.1		
	91.3			0.051		61.9		
	105.5			0.072		61.8		
	124.9			0.102		61.5		
	145.7			0.137		60.6		
	167.7			0.172		59.9		
	191.1			0.214		58.9		
	207.4			0.245		57.9		
	228.1			0.287		56.8		
	251.4			0.344		55.4		
	269.7			0.403		53.9		
	282.8			0.449		53.0		
	299.1			0.509		52.0		
	310.4			0.554		51.3		
	320.3			0.599		50.6		
	327.9			0.643		50.0		
	334.0			0.673		49.5		
	340.0			0.703		49.2		
	345.9			0.733		48.9		
	351.6			0.764		48.4		
	359.4			0.809		47.9		
	367.1			0.854		47.5		
	372.5			0.884		47.3		
	377.2			0.914		47.2		
Tested By:	MY	Date:	3/31/23		Input Checked By:	GEM	Date:	4/3/23

page 3 of 10 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

ASTM D4767-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Reference:	Cherrystone Dam 2A	Depth (ft):	10-12
Project No.:	R-2023-070-001	Sample No.:	UD-01
Lab ID:	R-2023-070-001-001		

Visual Description: Orange Brown Silt (Undisturbed)

Effective Confining Pressure (psi)		6.0		Stage No. Test No		0 1		
INITIAL D	IMENSIONS				VOLUME CHANGE			
Initial Sample Length (in) Initial Sample Diameter (in) Initial Sample Area (in ²) Initial Sample Volume (in ³)		5.97 2.83 6.27 37.44		Volume After Consolid Length After Consolida Area After Consolidatio	tion (in)		36.95 5.94 6.221	
Strain (%)	Deviator Stress PSI	ΔU	$\overline{\sigma}_1$	$\overline{\sigma}_3$	Effective Principal Stress Ratio	Ā	P	Q
0.01 0.04 0.15 0.24 0.35 0.50 0.66	1.80 3.04 5.06 6.25 7.16 8.39 9.58	0.37 0.69 1.30 1.76 1.81 1.80 2.12	7.43 8.35 9.75 10.49 11.36 12.59 13.46	5.6 5.3 4.7 4.2 4.2 4.2 3.9	1.319 1.573 2.077 2.471 2.709 2.998 3.469	0.21 0.23 0.26 0.29 0.26 0.22 0.23	6.53 6.83 7.22 7.37 7.77 8.39 8.67	0.90 1.52 2.53 3.12 3.58 4.19 4.79
0.85 1.21 1.72 2.30 2.90 3.60 4.12 4.84 5.79 6.79 7.55 8.56	$10.92 \\ 13.14 \\ 16.13 \\ 19.30 \\ 22.62 \\ 26.08 \\ 28.44 \\ 31.41 \\ 34.62 \\ 36.99 \\ 38.63 \\ 40.61 \\ 10000000000000000000000000000000000$	1.92 1.78 1.51 0.60 -0.10 -1.13 -2.06 -3.18 -4.62 -6.09 -6.99 -7.96	15.00 17.36 20.62 24.71 28.71 33.21 36.51 40.60 45.24 49.08 51.63 54.58	4.1 4.2 4.5 5.4 6.1 7.1 8.1 9.2 10.6 12.1 13.0 14.0	3.677 4.113 4.595 4.573 4.710 4.657 4.528 4.420 4.260 4.260 4.060 3.973 3.909	0.18 0.14 0.03 0.00 -0.04 -0.07 -0.10 -0.14 -0.17 -0.18 -0.20	9.54 10.79 12.55 15.06 17.41 20.17 22.29 24.89 27.93 30.58 32.31 34.27	5.46 6.57 8.07 9.65 11.31 13.04 14.22 15.71 17.31 18.50 19.32 20.31
$\begin{array}{c} 9.32 \\ 10.08 \\ 10.83 \\ 11.33 \\ 11.84 \\ 12.34 \\ 12.86 \\ 13.62 \\ 14.38 \\ 14.88 \\ 15.38 \end{array}$	41.92 43.00 43.74 44.35 44.96 45.53 46.06 46.73 47.39 47.85 48.21	-8.74 -9.39 -10.00 -10.53 -10.76 -11.10 -11.60 -12.06 -12.48 -12.66 -12.85	56.66 58.39 59.74 60.88 61.72 62.63 63.66 64.80 65.87 66.51 67.06	14.7 15.4 16.0 16.5 16.8 17.1 17.6 18.1 18.5 18.7 18.8	3.843 3.793 3.733 3.684 3.682 3.662 3.617 3.587 3.564 3.564 3.558	-0.21 -0.22 -0.23 -0.24 -0.25 -0.26 -0.26 -0.27 -0.27 -0.27	35.70 36.89 37.87 38.70 39.24 39.87 40.63 41.43 42.18 42.58 42.95	20.96 21.50 21.87 22.18 22.48 22.76 23.03 23.37 23.70 23.93 24.11

(IAL TEST INGS

ASTM D4767-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Reference:	Cherrystone Dam 2A	Depth (ft):	10-12
Project No.:	R-2023-070-001	Sample No.:	UD-01
Lab ID:	R-2023-070-001-001		

Visual Description: Orange Brown Silt (Undisturbed)

Stage No.	0
Test No.	3

PRESSURES (psi)

6.0
0.0
6.0
98

INITIAL SAMPLE DIMENSIONS (in) Length 1: 6.104 Diameter 1: 2.739 Length 2: 6.006 Diameter 2: 2.740 Length 3: Diameter 3: 6.039 2.740 Avg. Length: 6.050 Avg. Diam.: 2.740 **VOLUME CHANGE**

Initial Burette Reading (ml)	48.0
Final Burette Reading (ml)	23.8
Final Change (ml)	24.2

MAXIMUM OBLIQUITY POINTS

_			Initial Dial Reading (mil)	304
P	=	36.38	Dial Reading After Saturation (mil)	360
Q	=	24.59	Dial Reading After Consolidation (mil)	404

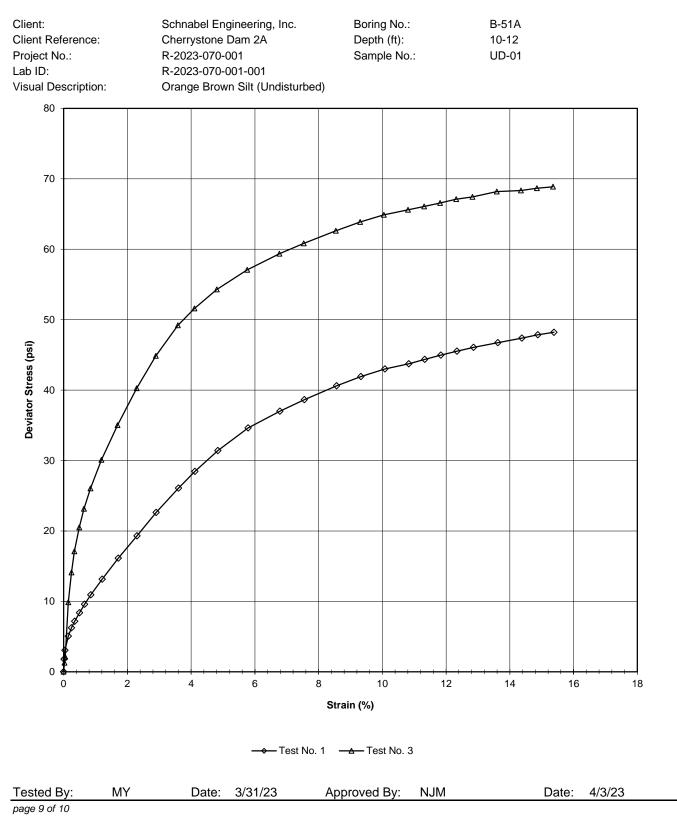
LOAD		DE	FORMAT	ION	PORE PRESSU	JRE	
(LB)			(IN)		(PSI)		
16.9			0.000		60.0		
24.0			0.001		60.2		
28.7			0.003		60.3		
72.0			0.009		62.7		
95.8			0.015		64.8		
112.5			0.020		66.6		
131.8			0.029		68.8		
146.8			0.038		70.3		
163.4			0.050		71.9		
186.8			0.070		73.6		
215.5			0.101		74.7		
246.8			0.136		75.1		
274.5			0.172		74.9		
301.5			0.213		74.2		
317.0			0.244		73.6		
335.1			0.286		72.7		
354.7			0.343		71.6		
372.1			0.403		70.7		
383.9			0.448		70.0		
398.9			0.508		69.2		
409.8			0.553		68.7		
419.3			0.598		68.1		
427.1			0.643		67.5		
432.6			0.673		67.2		
438.0			0.703		66.9		
443.9			0.733		66.5		
448.5			0.763		66.3		
457.2			0.809		65.9		
462.0			0.854		65.6		
466.7			0.884		65.3		
470.8			0.914		65.2		
Tested By: MY page 7 of 10 DCN: CT-S28 DATE	Date:	3/31/23		Input Checked By:	GEM	Date:	4/3/23

page 7 of 10 DCN: CT-S28 DATE: 4/12/13 REVISION: 3

ASTM D4767-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Reference:	Cherrystone Dam 2A	Depth (ft):	10-12
Project No.:	R-2023-070-001	Sample No.:	UD-01
Lab ID:	R-2023-070-001-001		

Visual Description: Orange Brown Silt (Undisturbed)


Effective Confining Pressure (psi) 26.0			Stage No. Test No	0 3	
INITIAL DIMENSIONS			VOLUME CHANGE		
Initial Sample Length (in) Initial Sample Diameter (in) Initial Sample Area (in ²) Initial Sample Volume (in ³)	6.05 2.74 5.90 35.66		Volume After Consolidation (in ³) Length After Consolidation (in) Area After Consolidation (in ²)		33.20 5.95 5.579
Strain Deviator <u>∧</u> U (%) Stress PSI	$\overline{\sigma}_1$	$\overline{\sigma}_3$	Effective Principal A Stress Ratio	P	Q

0.02	1.27	0.18	27.09	25.8	1.049	0.15	26.45	0.64
0.05	2.12	0.35	27.77	25.7	1.083	0.17	26.71	1.06
0.15	9.88	2.75	33.13	23.3	1.425	0.28	28.19	4.94
0.24	14.11	4.83	35.27	21.2	1.666	0.35	28.22	7.05
0.34	17.09	6.60	36.48	19.4	1.881	0.39	27.94	8.54
0.49	20.49	8.75	37.74	17.2	2.188	0.44	27.50	10.25
0.64	23.13	10.33	38.80	15.7	2.477	0.46	27.23	11.57
0.84	26.04	11.89	40.15	14.1	2.845	0.40	27.13	13.02
1.18	30.10	13.56	42.54	12.4	3.420	0.46	27.49	15.05
1.69	35.00	14.72	46.28	11.3	4.104	0.43	28.78	17.50
2.29	40.27	15.14	51.13	10.9	4.708	0.38	30.99	20.13
2.89	44.85	14.91	55.94	11.1	5.044	0.34	33.51	22.42
3.58	49.19	14.22	60.97	11.8	5.175	0.29	36.38	24.59
4.10	51.59	13.60	63.99	12.4	5.160	0.23	38.20	25.80
4.80	54.29	12.71	67.58	13.3	5.086	0.24	40.44	27.15
4.80 5.76	57.07	11.64	71.43	14.4	4.975	0.24	40.44	28.54
6.77	59.36	10.66	74.69	15.3	4.870	0.21	42.90	29.68
7.53	60.84	10.00	76.80	16.0	4.870	0.18	46.39	30.42
8.54	62.62	9.22	79.40	16.8	4.810	0.17	48.09	30.42
9.30	63.88	8.66	81.21	17.3	4.685	0.14	49.27	31.94
10.05	64.88	8.09	82.79	17.9	4.623	0.13	50.35	32.44
10.80	65.59	7.51	84.08	18.5	4.547	0.12	51.29	32.80
11.31	66.08	7.19	84.89	18.8	4.513	0.11	51.85	33.04
11.81	66.57	6.86	85.71	19.1	4.478	0.11	52.43	33.28
12.32	67.11	6.55	86.56	19.5	4.450	0.10	53.01	33.56
12.83	67.43	6.29	87.15	19.7	4.421	0.10	53.43	33.72
13.59	68.19	5.93	88.26	20.1	4.397	0.09	54.17	34.09
14.35	68.33	5.56	88.77	20.4	4.343	0.08	54.61	34.17
14.85	68.66	5.35	89.31	20.7	4.325	0.08	54.98	34.33
15.36	68.87	5.17	89.69	20.8	4.307	0.08	55.26	34.43

page 8 of 10

ASTM D4767-11

70	1 10	 7/ (,,	

Client:	Schnabel Engineering, Inc.		
Client Reference:	Cherrystone Dam 2A		
Project No.:	R-2023-070-001		
Lab ID:	R-2023-070-001-001	Specific Gravity (Measured)	2.81

Visual Description: Orange Brown Silt (Undisturbed)

SAMPLE CONDITION SUMMARY

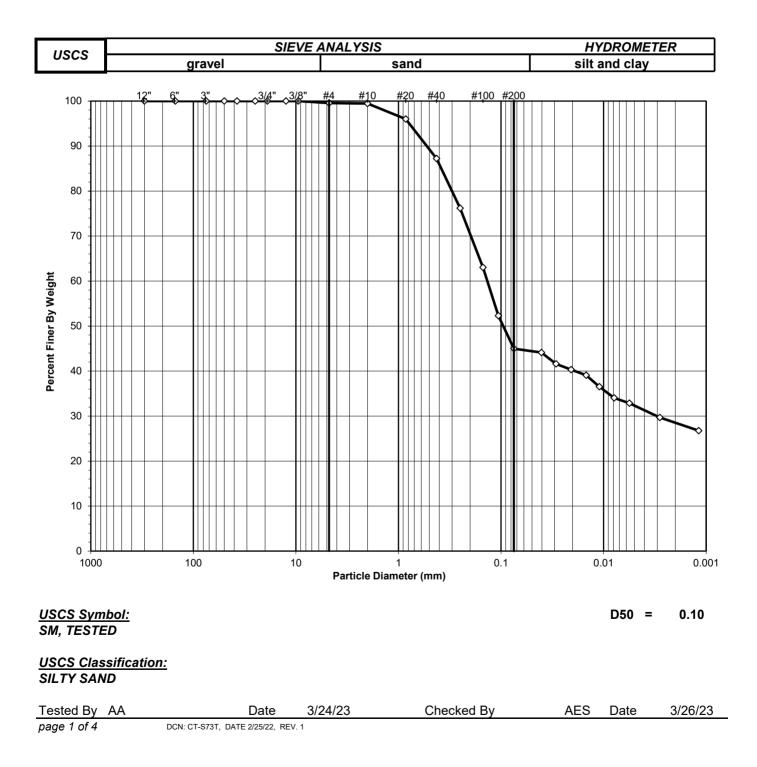
Boring No.:	B-51A	B-51A
Depth (ft):	10-12	10-12
Sample No.:	UD-01	UD-01
Test No.	T1	T3
Deformation Rate (in/min)	0.002	0.002
Back Pressure (psi)	60.0	60.0
Consolidation Time (days)	1	1
Moisture Content (%) (INITIAL)	15.6	15.6
Total Unit Weight (pcf)	121.3	130.5
Dry Unit Weight (pcf)	104.9	112.9
Moisture Content (%) (FINAL)	24.7	19.1
Initial State Void Ratio,e	0.672	0.554
Void Ratio at Shear, e	0.650	0.446

 Tested By:
 MY
 Date:
 3/31/23
 Input Checked By:
 GEM
 Date:
 4/3/23

 page 10 of 10
 DCN: CT-S28
 DATE:
 4/12/13
 REVISION: 3
 4/3/23

ASTM D4767-11

	MOIST		ENT	To
Tare Number		T1 908		ТЗ 908
Weight of Tare & Wet Sample	e (a)	297.05		297.05
Weight of Tare & Dry Sample		270.75		270.75
Weight of Tare (g)		102.07		102.07
Moisture Content (%) (INITIAI	_)	15.59		15.59
Tare Number		746		403
Weight of Tare & Wet Sample		1366.03		1431.34
Weight of Tare & Dry Sample	(g)	1123.41		1225
Weight of Tare (g)		140.56		142.35
Moisture Content (%) (FINAL)	1	24.69		19.06
	UI	NIT WEIGHT		
Weight of Tube & Wet Sample	e (g)	1192.01		1221.59
Weight of Tube (g)		0		0
Weight of Wet Sample (g)		1192.01		1221.59
Length 1 (in) Length 2 (in)		5.949 5.966		6.104 6.006
Length 3 (in)		6.004		6.039
Top Diameter (in)		2.81		2.739
Middle Diameter (in)		2.82		2.74
Bottom Diameter (in)		2.845		2.74
Average Length (in)		5.973		6.049667
Average Area (in)		6.268		5.895
Sample Volume (cm ³)		613.51		584.41
Unit Wet Weight (g/cm³) Unit Wet Weight (pcf)		1.94 121.30		2.09 130.50
Unit Dry Weight (pcf)		104.94		112.89
Unit Dry Weight (g/cm ³)		1.68		1.81
Initial Burette Reading		24		48
Final Burette Reading		15.7		23.8
Initial Dial Reading		232		304
Dial Reading After Saturation	·	231		360
Dial Reading After Consolidat		265		404
Volume Change during Conso Volume Change during Satura		8.3 -0.31		24.2 16.23
Volume at Shear (cm ³)	*These	605.52		543.98
Volume of Solids (cm ³)	measurements	366.98		376.09
Volume of Voids (cm ³)	are all	238.53		167.89
Volume of Water (cm ³)	at	254.56		201.42
Void Ratio, e	shear	0.650		0.446


page 11 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3

SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 1A R-2023-070-001 R-2023-070-001-002 Boring No.: Depth (ft): Sample No.: Soil Color: B-51A 56-58 UD-03 Orange Red

WASH SIEVE ANALYSIS

ASTM D6913-17

Client: Schnabel Engineering, Inc. Client Reference: Cherrystone Dam 1A Project No.: R-2023-070-001 Lab ID: R-2023-070-001-002

3/8"

#4

#10

#20

#40

#60 #100

#140

#200

Pan

9.5

4.75

2

0.85

0.425

0.25

0.15

0.106

0.075

-

Boring No.: Depth (ft): Sample No.: Soil Color:

B-51A 56-58 UD-03 Orange Red

Moisture (Content of Passir	ng 3/4" Material		Mois	ture Content of Retained	3/4" Material	
Tare No.:			2	446	Tare No.:		NA
Wt. of Tar	re & Wet Sample	e (g):	45	53.28	Weight of Tare & Wet Sa	ample (g):	NA
Wt. of Tar	re & Dry Sample	(g):	39	90.52	Weight of Tare & Dry Sa	mple (g):	NA
Weight of	Tare (g):		9	9.11	Weight of Tare (g):		NA
Weight of	Water (g):		6	2.76	Weight of Water (g):		NA
Weight of	Dry Soil (g):		29	91.41	Weight of Dry Soil (g):		NA
Moisture Content (%):		2	21.5	Moisture Content (%):		0.0	
Dry Weight of Sample (g):				NA	Total Dry Weight of Sam	ple (g):	291.41
Tare No.	Tare No. (Sub-Specimen)		4	446	Wet Weight of +3/4" San	nple (g):	0.00
Wt. of Tar	re & Wet Sub-Sp	ecimen (g):	453.28		Dry Weight of + 3/4" Sample (g):		0.00
Weight of Tare (g):		99.11		Dry Weight of - 3/4" Sample (g):		291.41	
Sub-Spec	imen Wet Weigh	nt (g):	354.17		Dry Weight -3/4" +3/8" Sample (g):		0.00
Tare No.	(-3/8" Sub-Specir	men):	NA		Dry Weight of -3/8" Sam	ple (g):	291.41
		ub-Specimen (g):	NA		J - Factor (% Finer than	3/4"):	NA
Weight of			NA		J - Factor (% Finer than 3/8"):		NA
Sub-Spec	imen -3/8" Wet V	Veight (g):		NA			
Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	0.00	(**)	0.00	0.00	100.00	100.0

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

(**)

(**)

0.00

1.34

0.25

10.09

25.50

32.21

38.37

31.25

21.37

131.03

Tested By	AA	Date	3/24/23	Checked By	AES	Date	3/26/23
page 3 of 4		DCN: CT-S73T, DATE 2/25/22, REV	. 1				

0.00

0.46

0.09

3.46

8.75

11.05

13.17

10.72

7.33

44.96

0.00

0.46

0.55

4.01

12.76

23.81

36.98

47.70

55.04

100.00

100.00

99.54

99.45

95.99

87.24

76.19

63.02

52.30

44.96

-

100.0

99.5

99.5

96.0

87.2

76.2

63.0

52.3

45.0

-

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

HYDROMETER ANALYSIS

ASTM D7928-21

Client: Client Reference:	Schnabel Engineering, Inc. Cherrystone Dam 1A	Boring No.: Depth (ft):	B-51A 56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Soil Color:	Orange Red

Elapsed Time (min)	•				D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm	
0	NA	NA	NA	NA	NA	NA	NA	
1	38.0	21.4	3.15	9.8	0.0404	98.1	44.1	
2	36.0	21.4	3.15	10.2	0.0291	92.5	41.6	
4	35.0	21.4	3.15	10.3	0.0208	89.7	40.3	
8	34.0	21.4	3.15	10.5	0.0148	86.9	39.1	
15	32.0	21.4	3.15	10.9	0.0110	81.2	36.5	
30	30.0	21.5	3.11	11.2	0.0079	75.7	34.0	
60	29.0	21.7	3.04	11.4	0.0056	73.1	32.9	
240	26.0	23.0	2.56	12.0	0.0028	66.0	29.7	
1440	24.0	22.2	2.86	12.3	0.0012	59.5	26.8	

Soil Specimen Data

Tare No.:	7	Percent Finer than # 200:	44.96
Wt. of Tare & Dry Material (g):	363.85		
Weight of Tare (g):	324.59	Specific Gravity:	2.82 Measured
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	34.26		

Notes: Hydrometer test is performed on - # 200 sieve material.

Hydrometer - 152H	R- 481
Cylinder	R- 700
Thermometer	R- 350
Balance	R- 279
#200 Sieve	R- 632
Foam Inhibitor Used	No

Tested By	RFF	Date	3/16/23	Checked By	AES	Date	3/26/23
page 4 of 4							

ATTERBERG LIMITS

ASTM D 4318-17

Client Reference: Cherr Project No.: R-202 Lab ID: R-202 Note: The USCS symbol use sieve material. See the "Sieve AS Received Mo ASTM D22 Tare Number: Wt. of Tare & Wet Sample (g Weight of Tare (g): Weight of Water (g):	e and Hydrometer Ar Disture Content 16-19 446 g): 453.20	s only to nalysis" g 8 2	۲ Soil [the minus Not	o. 40 r the compl	56-58 : UD-03 : ORANGE REE (Minus #40 sieve r	material, Wet Pre cription . t M U L T I P	÷p.)
Weight of Dry Sample (g): Was As Received MC Prese Moisture Content (%): Number of Blows:			30.9 35	33.6 24	38.7 15	O I N T	
Plastic Limit Test	1	2	Range		Test Result	S	
Tare Number: Wt. of Tare & Wet Sample (g Wt. of Tare & Dry Sample (g Weight of Tare (g): Weight of Water (g): Weight of Dry Sample (g): Moisture Content (%):): 21.03	A-Q 22.19 20.85 15.45 1.3 5.4 24.8	-0.2		Liquid Limit (Plastic Limit (Plasticity Inde USCS Symbo	(%): 2 ex (%): 9	34 25 9 ML
Note: The acceptable range	of the two Moisture	Content		.84	lesticity Chart		
Flow (38 36 34 30 28 26 24 22 20 1 Numbrices			60 50 40 30 20 10 0 0 CL- ML	CL ML 20	A0 60 Quid Limit (%)	MH 80 100)
Tested By CFD Da	ate 3/22/23	Chec	ked By	AES	Date 3/2	4/23	

SPECIFIC GRAVITY

AASHTO T-100-15

Client:	Schnabel Engineering, Inc.	Boring No.: B-51A
Client Reference:	Cherrystone Dam 2A	Depth (ft): 56-58
Project No.:	R-2023-069-001	Sample No.: UD-03
Lab ID:	R-2023-069-001-002	Visual Description: Orange Red Silty Sand

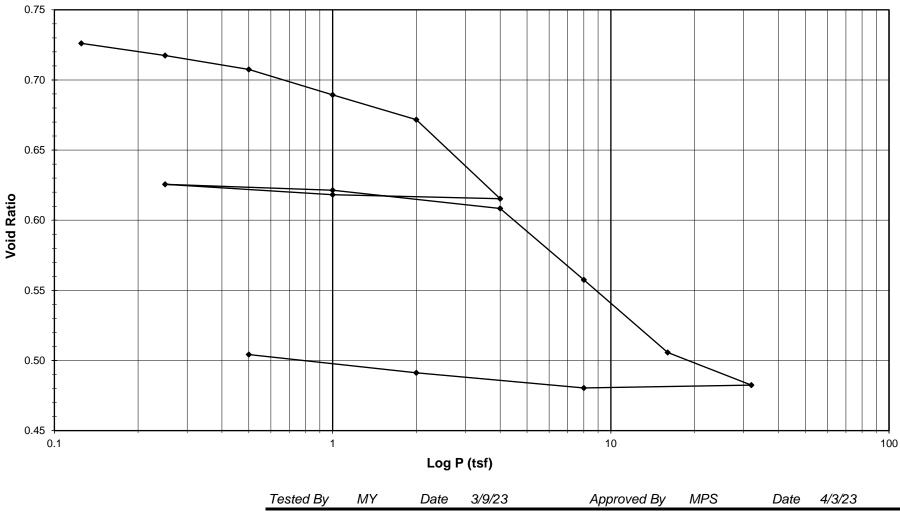
(MInus No.4 sieve material, oven dried)

Replicate Number	1	2
Pycnometer ID:	R 716	R 717
Weight of Pycnometer & Soil & Water (g):	686.13	684.83
Temperature (°C):	23.1	23.1
Weight of Pycnometer & Water (g):	652.20	650.80
Tare Number:	716	717
Weight of Tare & Dry Soil (g):	206.9	205.48
Weight of Tare (g):	154.21	152.77
Weight of Dry Soil (g):	52.69	52.71
Specific Gravity of Soil @ Measured Temperature:	2.808	2.822
Specific Gravity of Water @ Measured Temperature:	0.99752	0.99752
Conversion Factor for Measured Temperature:	0.99931	0.99931
Specific Gravity @ 20° Celsius:	2.810	2.823

Average Specific Gravity @ 20° Celsius

2.82

Tested By	RFF	Date	3/17/23	Checked By	AES	Date 3/17/23
-----------	-----	------	---------	------------	-----	--------------


page 1 of 1 DCN: CT-S5 DATE: 3/26/18 REVISION: 21

ASTM D2435 / D2435M-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand

Sample Conditions: Undisturbed, Inundated, Double Drained

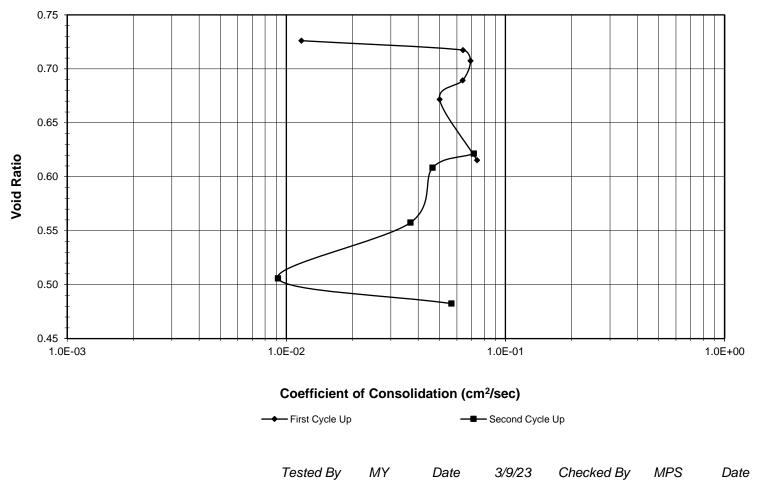
page 1 of 20

ASTM D2435 / D2435M-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand

Sample Conditions:Undisturbed, Inundated, Double DrainedConsolidometer No.R4091 Division=0.0001(in.)

Sample Properties	Initial	Final					Test Data	Summary			
<i>Water Content</i> Tare Number	446	491		Applied Pressure	Final Dial Reading	Deflection	-	Sample	Volume	Dry Density	Void Ratio
Wt. of Tare & WS (g)	453.28	254.69		(tsf)	(div)	(div)	(div)	(mm)	(cm ³)	(g/cm ³)	
Wt. of Tare & DS (g)	390.52	231.49				_					
Wt. of Water (g)	62.76	23.20		Seating	0	0	0	25.400	80.440	1.62780	0.73240
Wt. of Tare (g)	99.11	100.44		0.125	45.2	8.7	36.5	25.307	80.146	1.63376	0.72608
Wt. of DS (g)	291.41	131.05		0.25	101.7	15.0	86.7	25.180	79.742	1.64204	0.71738
Water Content (%)	21.54	17.70		0.5	170.1	26.1	144.0	25.034	79.282	1.65158	0.70746
				1	290.7	42.3	248.4	24.769	78.441	1.66927	0.68936
Sample Parameters				2	429.0	78.2	350.8	24.509	77.618	1.68698	0.67163
Sample Diameter (in)	2.5	2.5		4	768.2	92.4	675.8	23.683	75.003	1.74579	0.61532
Sample Height (in)	1.0000	0.8683		1	721.4	62.2	659.2	23.726	75.138	1.74267	0.61821
Sample Volume (cm ³)	80.44	69.84		0.25	652.1	35.8	616.4	23.834	75.482	1.73472	0.62562
Wt. of Wet Sample + Ring (g)	373.81	368.79		1	695.3	54.7	640.6	23.773	75.286	1.73922	0.62141
Wt. of Ring (g)	214.67	214.67		4	806.7	90.8	715.9	23.582	74.681	1.75332	0.60838
Wt. of Wet Sample (g)	159.14	154.12		8	1127.3	118.0	1009.3	22.836	72.321	1.81053	0.55755
Wet Density (pcf)	123.45	137.69		16	1466.6	158.2	1308.4	22.077	69.915	1.87285	0.50572
Wet Density (g/cm ³)	1.98	2.21		32	1671.4	228.4	1443.0	21.735	68.833	1.90230	0.48242
Water Content (%)	21.54	17.70		8	1579.9	125.4	1454.5	21.706	68.740	1.90485	0.48043
Wt. of Dry Sample (g)	130.94	130.94		2	1481.8	90.0	1391.8	21.865	69.244	1.89100	0.49128
Dry Density (pcf)	101.57	116.98		0.5	1375.6	58.4	1317.2	22.054	69.844	1.87474	0.50421
Dry Density (g/cm ³)	1.63	1.87									
Void Ratio	0.7324	0.5042									
Saturation (%)	82.92	99.01									
Specific Gravity	2.82	Measured									
			Tested By	MY	Date	3/9/23	С	hecked By	MPS	Date	4/3/23


4/3/23

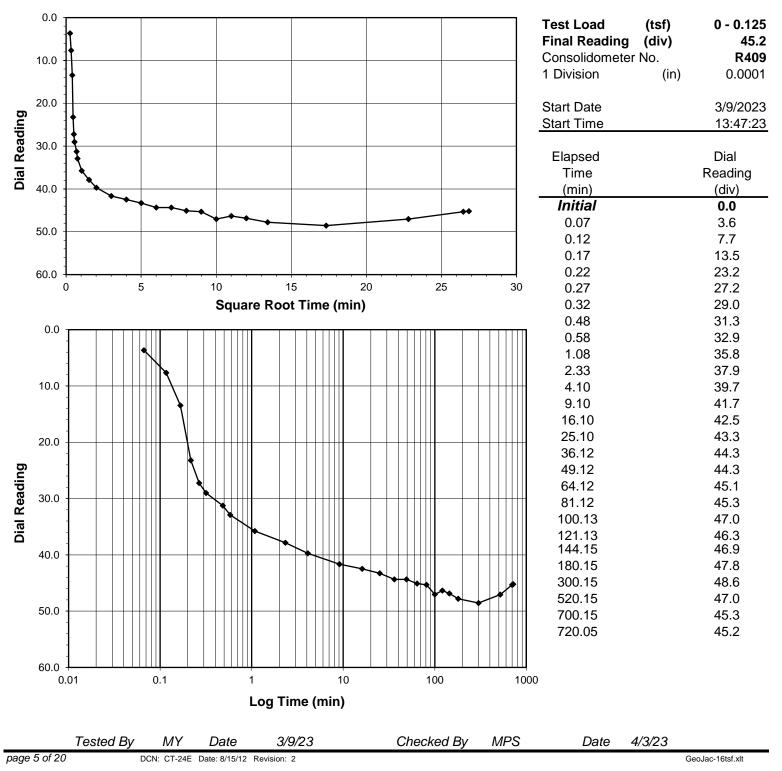
ASTM D2435 / D2435M-11

Client:Schnabel Engineering, Inc.Client Project:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-002

Boring No.:B-51ADepth (ft):56-58Sample No.:UD-03Visual Description:Orange

B-51A 56-58 UD-03 Orange Red Silty Sand

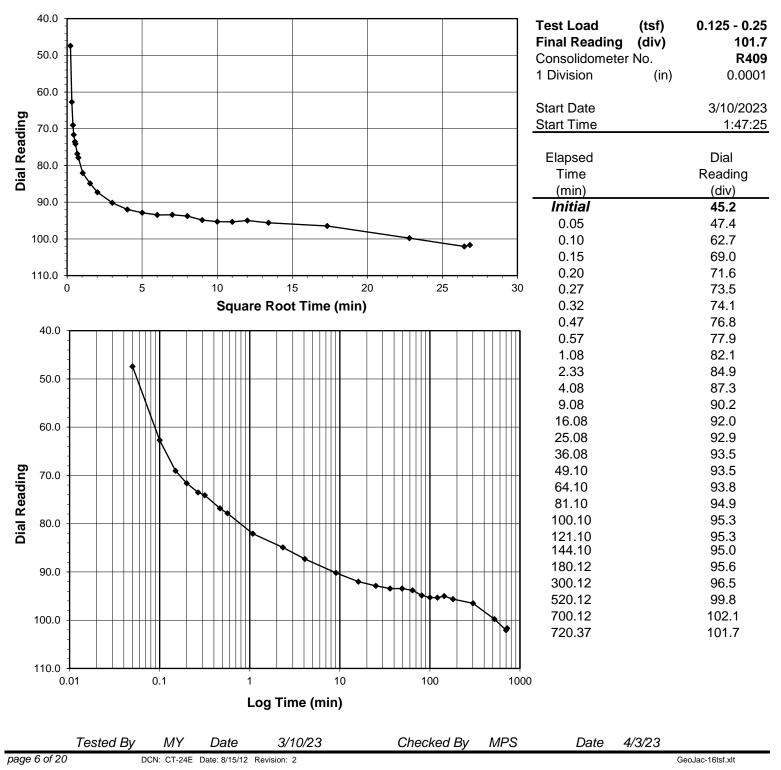
ASTM D2435 / D2435M-11


Client Project: C Project No.: R	Cherryston R-2023-07	Engineering e Dam 2A 0-001 0-001-002	g, Inc.			Boring No Depth (ft): Sample No Visual Des	0.:	B-51A 56-58 UD-03 Orange Red Si	Ity Sand		
Sample Conditions: U Consolidometer No.	Jndisturbe R409	d, Inundate	ed, Double D	rained							
1 Division =	0.0001	(in.)									
							C _v <u>T</u>	est Data Sumn	nary		
Sample Properties		Initial	Final		Load	Dial	Machine	Corrected	Sample	Time	Cv
Water Content								Dial Reading	Height	t 50	C _v
Tare Number		446	491			@ t ₅₀	2011000101	@ t ₅₀	@ t_{50}	- 50	
Wt. of Tare & WS (g)		453.28	254.69		(tsf)	(div)	(div)	(div)	(cm)	(min.)	(cm ² /sec)
Wt. of Tare & DS (g)		390.52	231.49	-	(101)	(0.17)	(0.17)	(0.17)	(0)	()	(0117000)
Wt. of Water (g)		62.76	23.20		0 - 0.125	31.0	8.7	22.3	2.534	0.45	0.0117
Wt. of Tare (g)		99.11	100.44	(0.125 - 0.25	58.1	15.0	43.1	2.529	0.08	0.0640
Wt. of DS (g)		291.41	131.05		0.25 - 0.5	120.4	26.1	94.3	2.516	0.08	0.0693
Water Content (%)		21.54	17.70		0.5 - 1	222.0	42.3	179.7	2.494	0.08	0.0638
					1 - 2	352.5	78.2	274.3	2.470	0.10	0.0501
Sample Parameters					2 - 4	549.3	92.4	456.9	2.424	0.07	0.0742
Sample Diameter (in)		2.5	2.5		4 - 1	NA	NA	NA	NA	NA	NA
Sample Height (in)		1.0000	0.8683		1 - 0.25	NA	NA	NA	NA	NA	NA
Sample Volume (cm ³)		80.44	69.84		0.25 - 1	671.2	54.7	616.5	2.383	0.07	0.0717
Wt. of Wet Sample + Ri	ng (g)	373.81	368.79		1 - 4	766.9	90.8	676.1	2.368	0.10	0.0465
Wt. of Ring (g)		214.67	214.67		4 - 8	975.7	118.0	857.7	2.322	0.12	0.0369
Wt. of Wet Sample (g)		159.14	154.12		8 - 16	1336.3	158.2	1178.1	2.241	0.45	0.0092
Wet Density (pcf)		123.45	137.69		16 - 32	1632.6	228.4	1404.2	2.183	0.07	0.0567
Wet Density (g/cm ³)		1.98	2.21		32 - 8	NA	NA	NA	NA	NA	NA
Water Content (%)		21.54	17.70		8 - 2	NA	NA	NA	NA	NA	NA
Wt. of Dry Sample (g)		130.94	130.94		2 - 0.5	NA	NA	NA	NA	NA	NA
Dry Density (pcf)		101.57	116.98								
Dry Density (g/cm ³)		1.63	1.87								
Void Ratio		0.7324	0.5042								
Saturation (%)		82.92	99.01								
Specific Gravity		2.82	Measured	Tested By	MY	Date	3/9/23	Checked By	MPS	Date	4/3/23
						24.0	0,0,20	enconca by		24.0	,, 0, 20

page 4 of 20

ASTM D2435 / D2435M-11

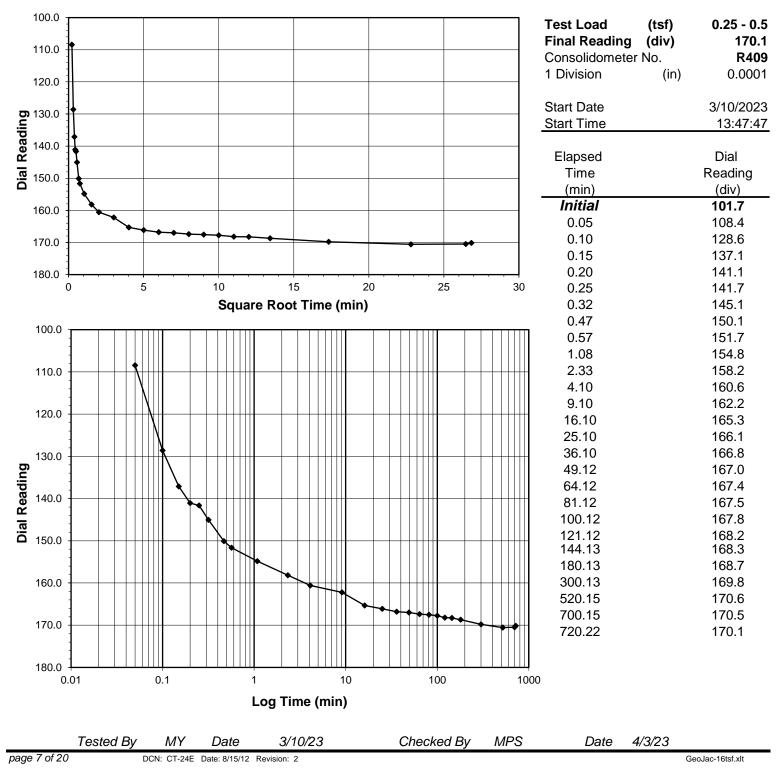
Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand



ASTM D2435 / D2435M-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand

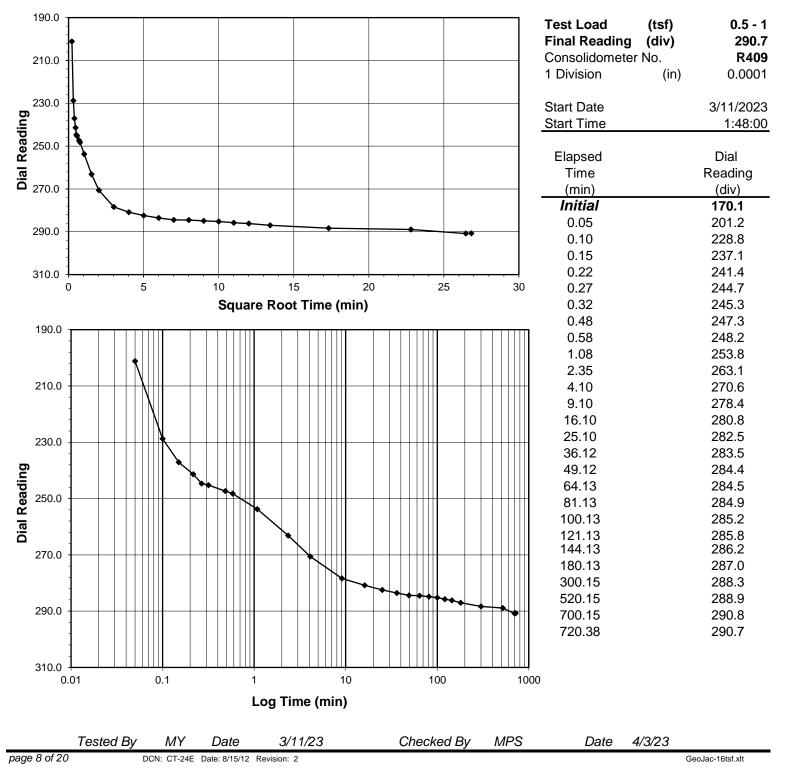
Sample Conditions: Undisturbed, Inundated, Double Drained



ASTM D2435 / D2435M-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand

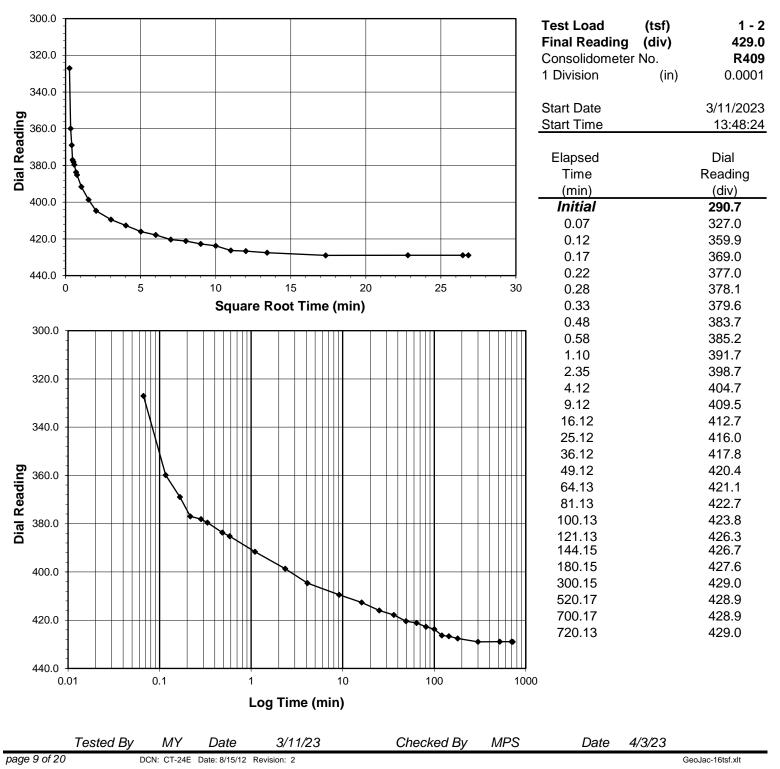
Sample Conditions: Undisturbed, Inundated, Double Drained



ASTM D2435 / D2435M-11

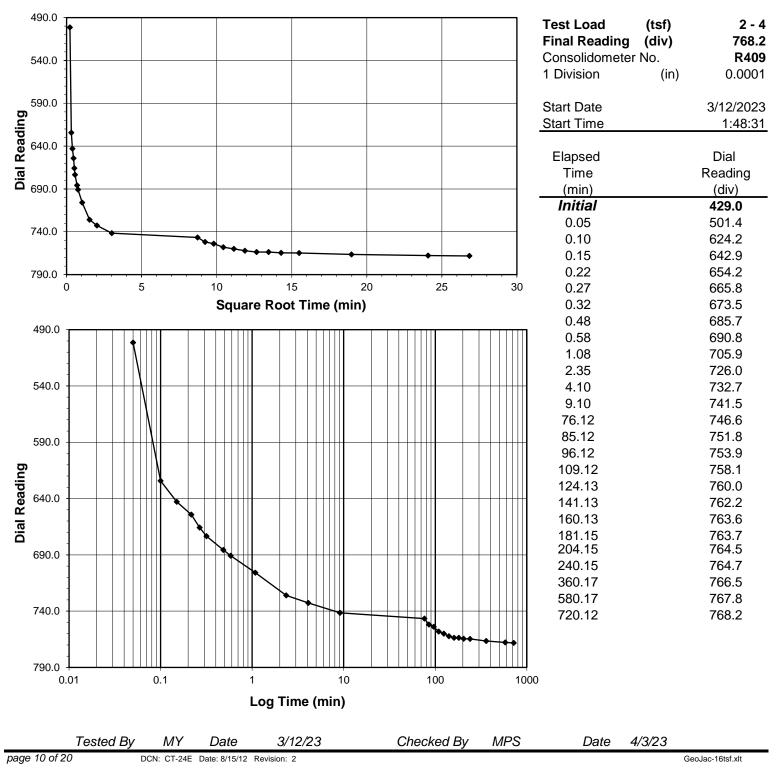
Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand

Sample Conditions: Undisturbed, Inundated, Double Drained



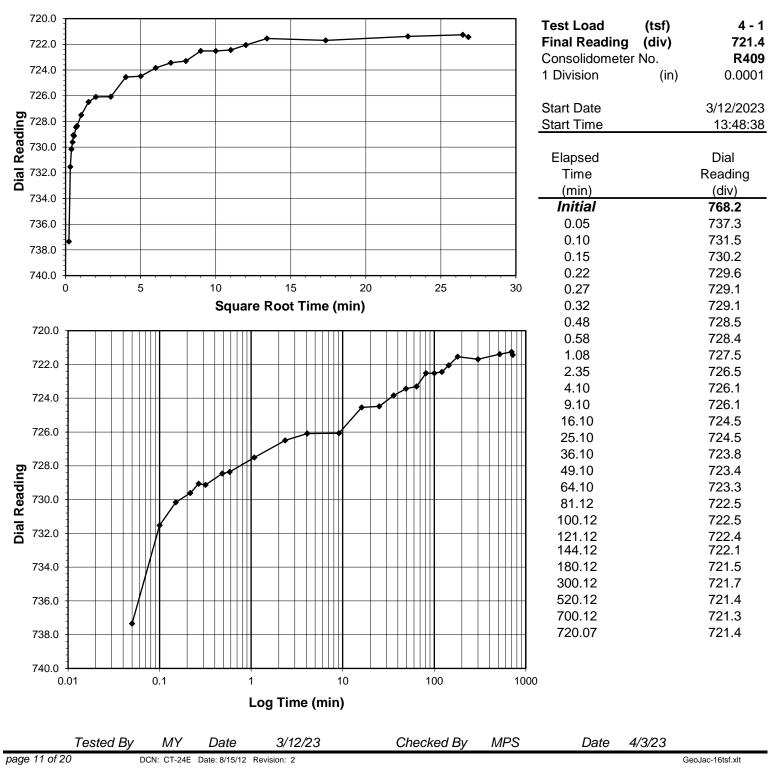
ASTM D2435 / D2435M-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand


Sample Conditions: Undisturbed, Inundated, Double Drained

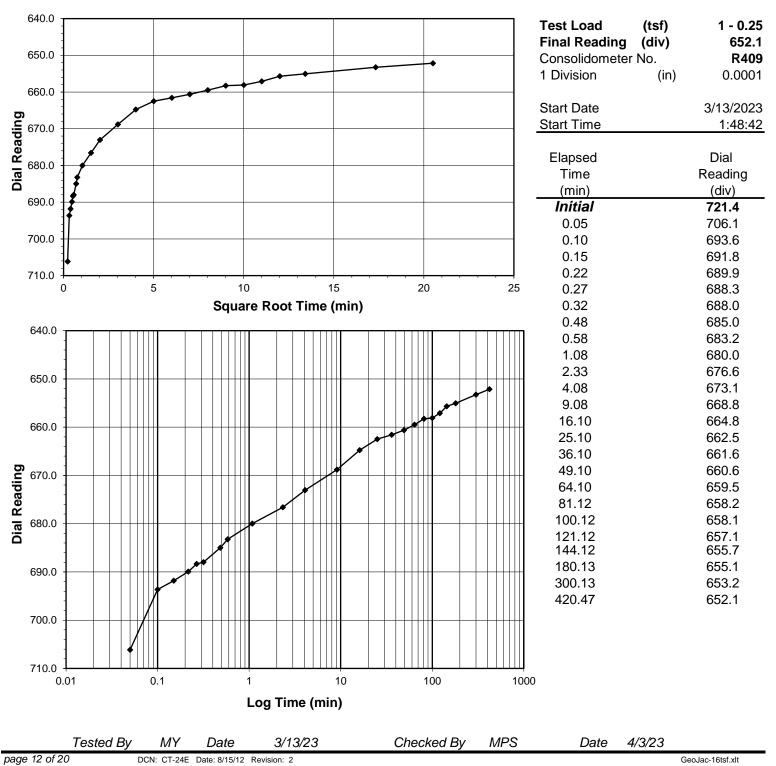
ASTM D2435 / D2435M-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand



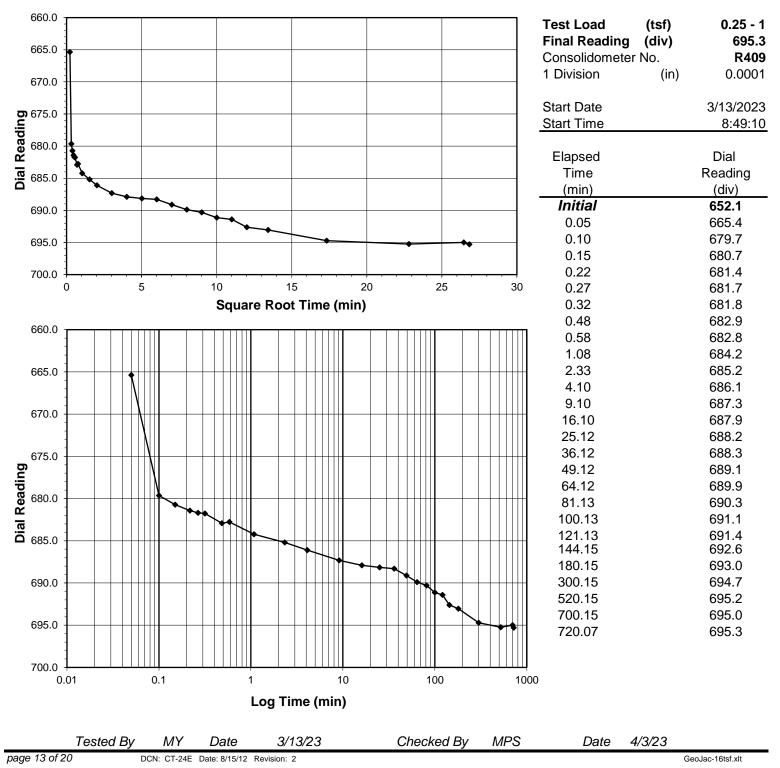
ASTM D2435 / D2435M-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand


Sample Conditions: Undisturbed, Inundated, Double Drained

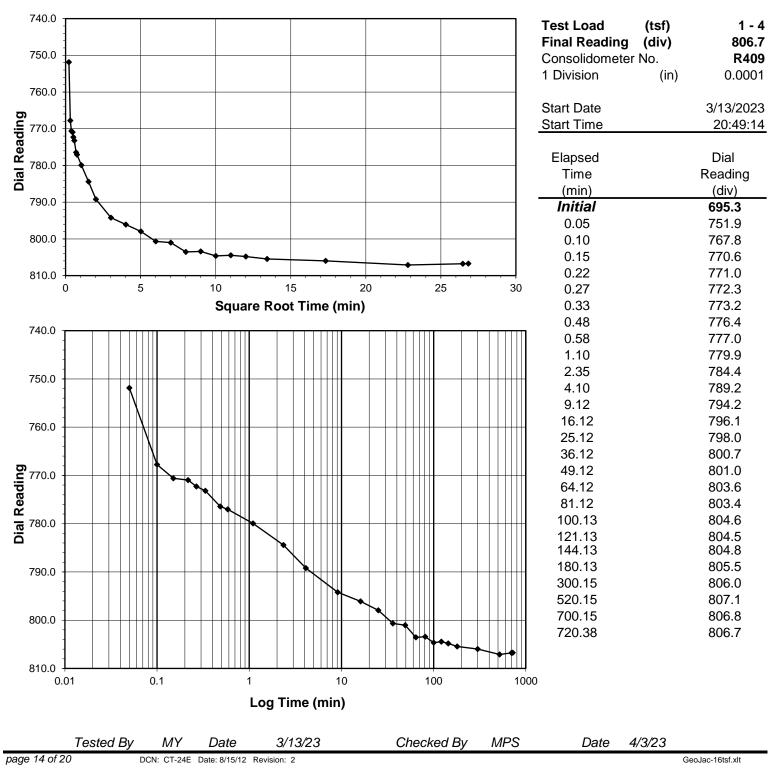
ASTM D2435 / D2435M-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand



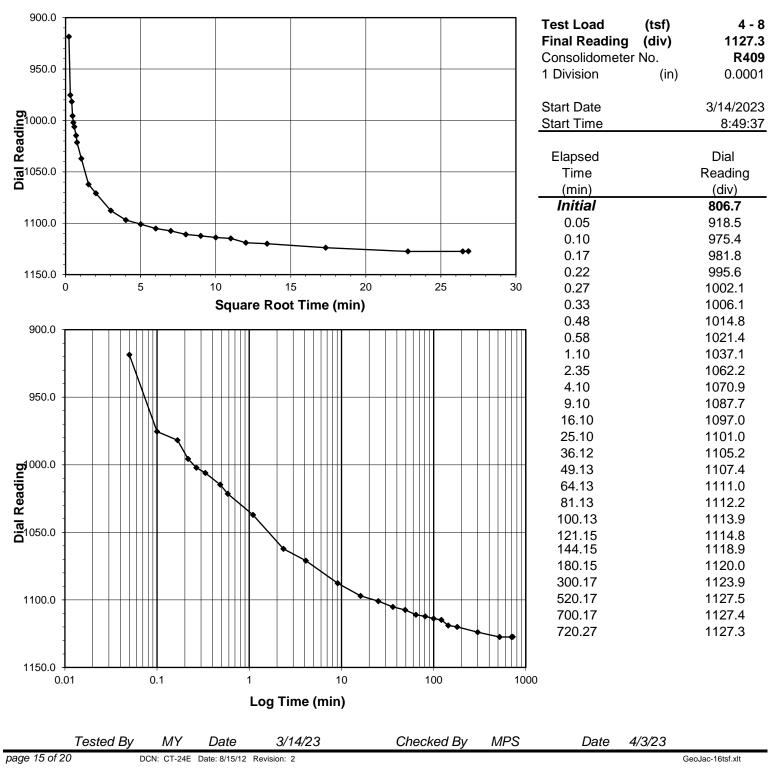
ASTM D2435 / D2435M-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand


Sample Conditions: Undisturbed, Inundated, Double Drained

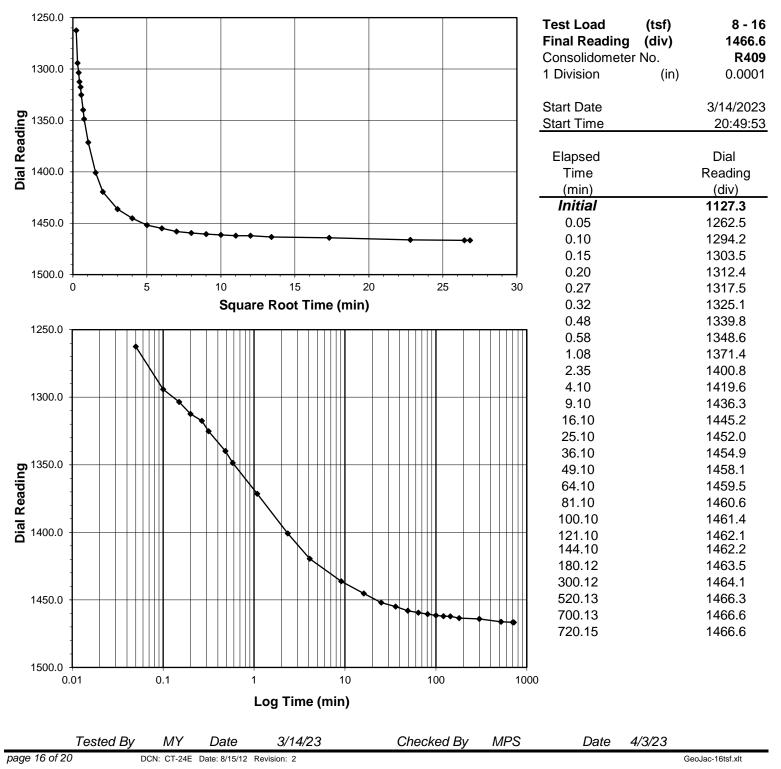
ASTM D2435 / D2435M-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand



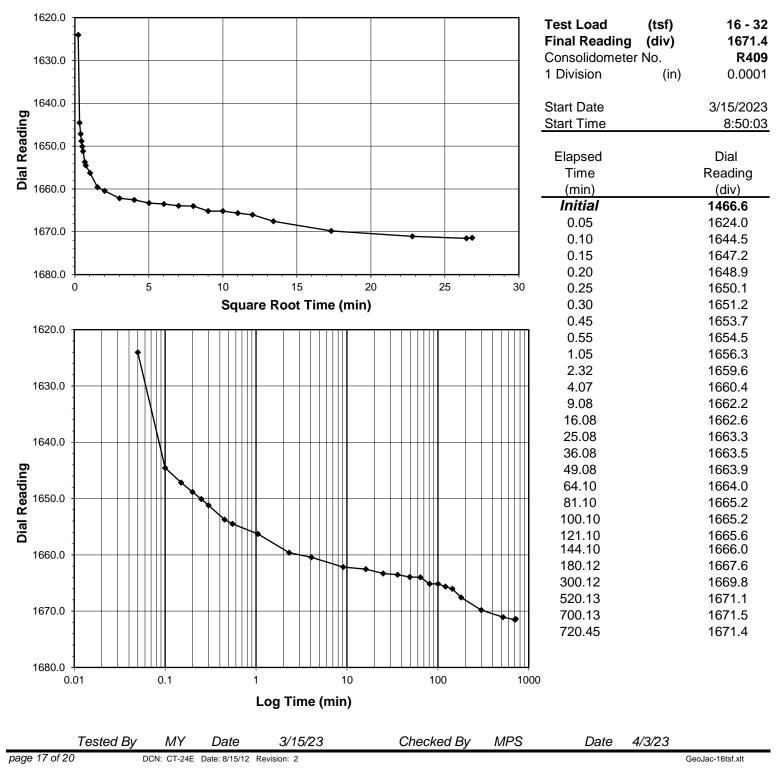
ASTM D2435 / D2435M-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand


Sample Conditions: Undisturbed, Inundated, Double Drained

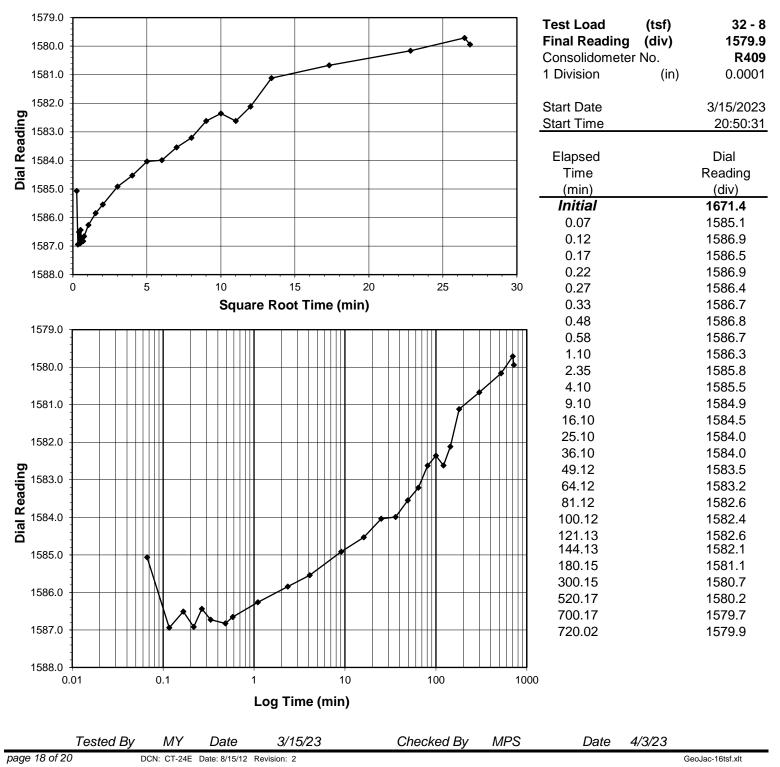
ASTM D2435 / D2435M-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand



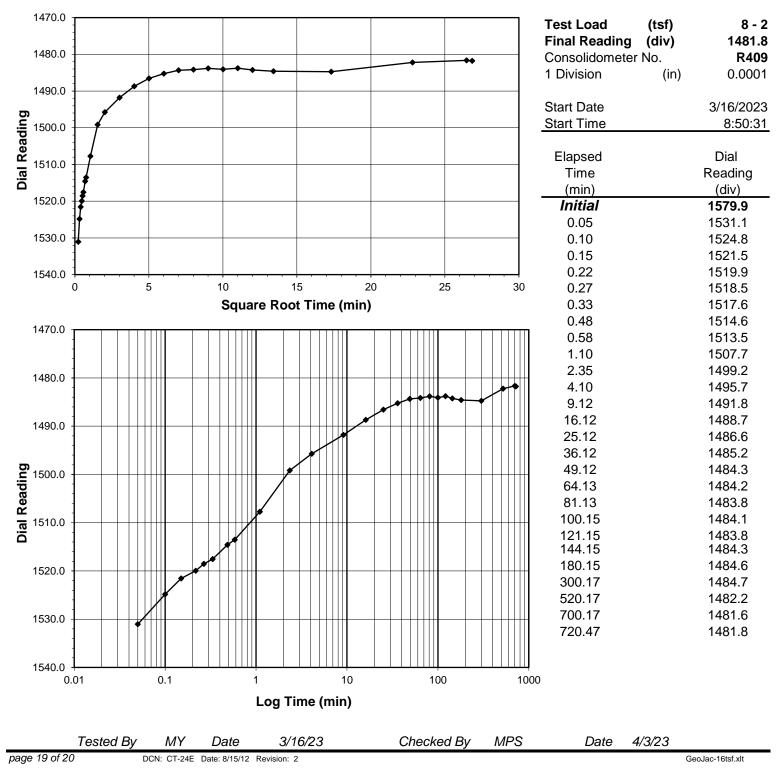
²²⁰⁰ Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

ASTM D2435 / D2435M-11


Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand

ASTM D2435 / D2435M-11

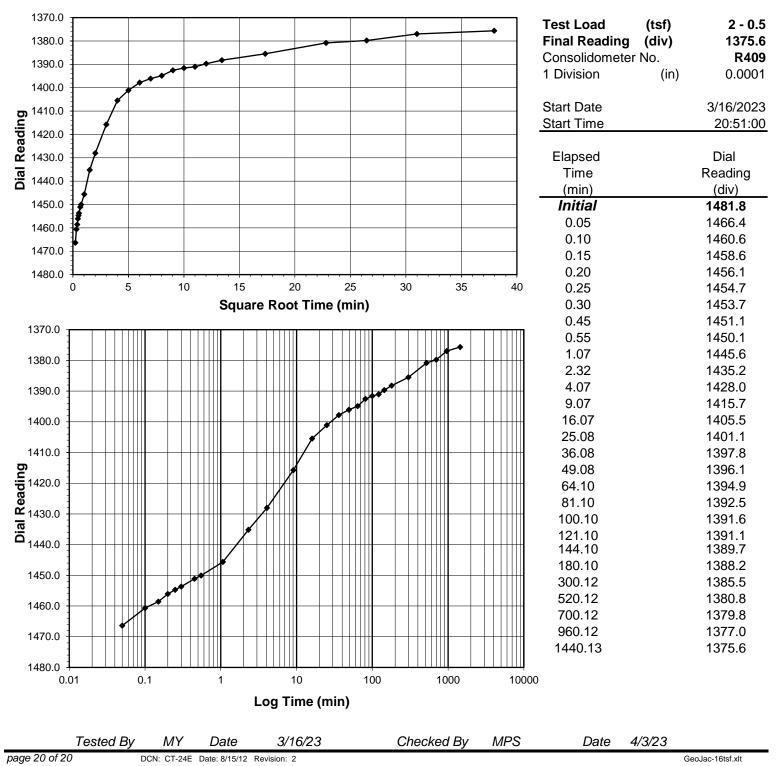
Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand



ASTM D 2435-96 (SOP-S24A)

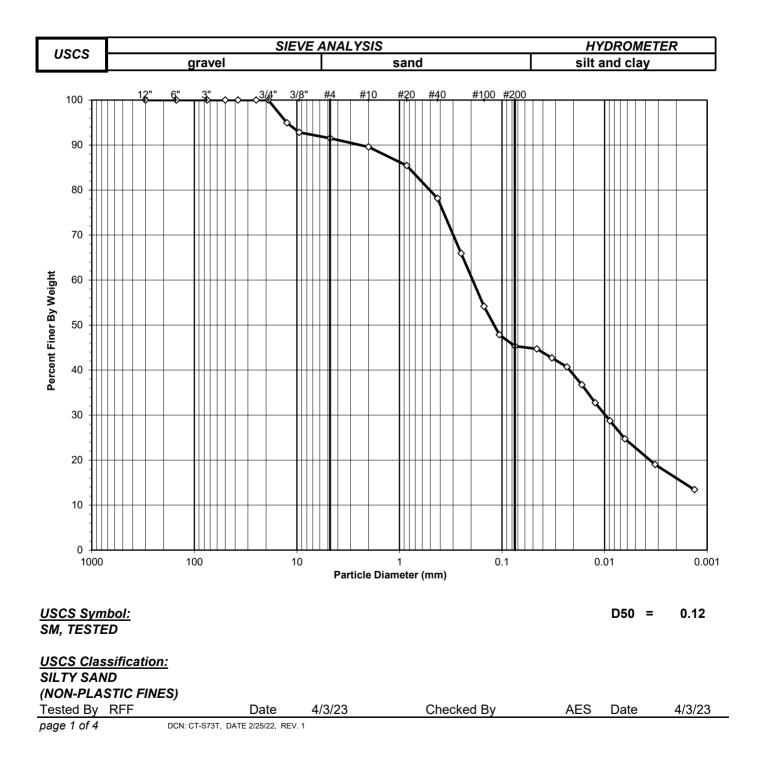
Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red

d Silty Sand


Sample Conditions: Undisturbed, Inundated, Double Drained

ASTM D2435 / D2435M-11

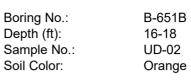
Client:	Schnabel Engineering, Inc.	Boring No.:	B-51A
Client Project:	Cherrystone Dam 2A	Depth (ft):	56-58
Project No.:	R-2023-070-001	Sample No.:	UD-03
Lab ID:	R-2023-070-001-002	Visual Description:	Orange Red Silty Sand



SIEVE AND HYDROMETER ANALYSIS

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-003 Boring No.: Depth (ft): Sample No.: Soil Color: B-651B 16-18 UD-02 Orange



WASH SIEVE ANALYSIS

ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-003

Moisture C	Content of Pass	ing 3/4" Material	Mois	ture Content of Retained	8/4" Material	
Tare No.:			404	Tare No.:		NA
Wt. of Tar	e & Wet Sampl	e (g):	423.68	Weight of Tare & Wet San	nple (g):	NA
Wt. of Tar	e & Dry Sample	e (g):	383.55	Weight of Tare & Dry Sam	ple (g):	NA
Weight of	Tare (g):		143.05	Weight of Tare (g):		NA
Weight of	Water (g):		40.13	Weight of Water (g):		NA
Weight of	Dry Soil (g):		240.50	Weight of Dry Soil (g):		NA
Moisture	Content (%):		16.7	Moisture Content (%):		0.0
Dry Weigh	t of Sample (g)	:	NA	Total Dry Weight of Sampl	e (g):	240.50
	Sub-Specimen		404	Wet Weight of +3/4" Samp		0.00
	e & Wet Sub-S		423.68	Dry Weight of + 3/4" Sample (g):		0.00
Weight of			143.05 Dry Weight of - 3/4" Sample (g):		240.50	
	men Wet Weig	ht (a):	280.63	Dry Weight -3/4" +3/8" Sai		17.23
	-3/8" Sub-Spec		NA	Dry Weight of -3/8" Sample		223.27
	•	Sub-Specimen (g):	NA	J - Factor (% Finer than 3/		NA
Weight of			NA	J - Factor (% Finer than 3/		NA
	men -3/8" Wet	Weight (g):	NA		- ,	
Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100
6"	150	0.00	0.00	0.00	100.00	100
1						

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		()	(3/		(/	(/	()	(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12"	300	0.00		0.00	0.00	100.00	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6"	150	0.00		0.00	0.00	100.00	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3"	75	0.00		0.00	0.00	100.00	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2"	50	0.00	(*)	0.00	0.00	100.00	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1/2"	37.5	0.00		0.00	0.00	100.00	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1"	25	0.00		0.00	0.00	100.00	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/4"	19	0.00		0.00	0.00	100.00	100
3/8"9.55.03(*)2.097.1692.8493#44.753.201.338.4991.5192#1024.591.9110.4089.6090#200.859.98(**)4.1514.5585.4585#400.42517.537.2921.8478.1678#600.2529.3712.2134.0565.9566#1000.1528.3511.7945.8454.1654#1400.10615.206.3252.1647.8448#2000.0756.082.5354.6945.3145	1/2"	12.5	12.20	(**)	5.07	5.07	94.93	95
#1024.591.9110.4089.6090#200.859.98(**)4.1514.5585.4585#400.42517.537.2921.8478.1678#600.2529.3712.2134.0565.9566#1000.1528.3511.7945.8454.1654#1400.10615.206.3252.1647.8448#2000.0756.082.5354.6945.3145	3/8"	9.5	5.03	()	2.09	7.16	92.84	93
#200.859.98(**)4.1514.5585.4585#400.42517.537.2921.8478.1678#600.2529.3712.2134.0565.9566#1000.1528.3511.7945.8454.1654#1400.10615.206.3252.1647.8448#2000.0756.082.5354.6945.3145	#4	4.75	3.20		1.33	8.49	91.51	92
#400.42517.537.2921.8478.1678#600.2529.3712.2134.0565.9566#1000.1528.3511.7945.8454.1654#1400.10615.206.3252.1647.8448#2000.0756.082.5354.6945.3145	#10	2	4.59		1.91	10.40	89.60	90
#600.2529.3712.2134.0565.9566#1000.1528.3511.7945.8454.1654#1400.10615.206.3252.1647.8448#2000.0756.082.5354.6945.3145	#20	0.85	9.98	(**)	4.15	14.55	85.45	85
#1000.1528.3511.7945.8454.1654#1400.10615.206.3252.1647.8448#2000.0756.082.5354.6945.3145	#40	0.425	17.53		7.29	21.84	78.16	78
#1400.10615.206.3252.1647.8448#2000.0756.082.5354.6945.3145	#60	0.25	29.37		12.21	34.05	65.95	66
#200 0.075 6.08 2.53 54.69 45.31 45	#100	0.15	28.35		11.79	45.84	54.16	54
	#140	0.106	15.20		6.32	52.16	47.84	48
Pan - 108.97 45.31 100.00	#200	0.075	6.08		2.53	54.69	45.31	45
	Pan	-	108.97		45.31	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	RFF	Date	4/3/23	Checked By	AES	Date	4/3/23
page 3 of 4		DCN: CT-S73T, DATE 2/25/22, REV. 1					

HYDROMETER ANALYSIS

ASTM D7928-21

Client: Client Reference:	Schnabel Engineering, Inc. Cherrystone Dam 2A	Boring No.: Depth (ft):	B-651B 16-18
Project No.:	R-2023-070-001	Sample No.:	UD-02
Lab ID:	R-2023-070-001-003	Soil Color:	Orange

Elapsed ſime (min)	Reading rm	Temp. (C [°])	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm
0	NA	NA	NA	NA	NA	NA	NA
1	25.0	22.8	2.64	12.1	0.0458	98.7	44.7
2	24.0	22.8	2.64	12.3	0.0326	94.3	42.7
4	23.0	22.8	2.64	12.5	0.0232	89.9	40.7
8	21.0	22.8	2.64	12.9	0.0167	81.0	36.7
15	19.0	22.8	2.64	13.2	0.0123	72.2	32.7
30	17.0	22.8	2.64	13.6	0.0088	63.4	28.7
60	15.0	22.8	2.64	13.9	0.0063	54.6	24.7
240	12.0	23.2	2.49	14.5	0.0032	42.0	19.0
1440	9.0	23.7	2.29	15.0	0.0013	29.6	13.4

Son Specimen Data			
Tare No.:	5	Percent Finer than # 200:	45.31
Wt. of Tare & Dry Material (g):	350.47		
Weight of Tare (g):	323.06	Specific Gravity:	2.70 Assumed
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	22.41		

Notes: Hydrometer test is performed on - # 200 sieve material.

Hydrometer - 152H	R- 481
Cylinder	R- 697
Thermometer	R- 350
Balance	R- 279
#200 Sieve	R- 632
Foam Inhibitor Used	No

Tested By	RFF	Date	3/24/23	Checked By	AES	Date	3/27/23
page 4 of 4							

ATTERBERG LIMITS

ASTM D 4318-17

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-003

Boring No.: Depth (ft): Sample No.: Color: B-651B 16-18 UD-02 Orange (MInus No. 40 sieve material,Wet Prep.)

As Received Water Content

Water Content (%)

Tare Number	404
Wt. of Tare & Wet Sample (g)	423.68
Wt. of Tare & Dry Sample (g)	383.55
Weight of Tare (g)	143.05
Weight of Water (g)	40.13
Weight of Dry Sample (g)	240.50

16.7

NON - PLASTIC MATERIAL

Tested By SS Date 3/23/23 Checked By AES Date 3/26/23

page 1 of 1 DCN: CT-S4C, DATE: 4/27/17, REVISION : 4e

SPECIFIC GRAVITY

AASHTO T-100-15

Client:	Schnabel Engineering, Inc.	Boring No.: B-651B
Client Reference:	Cherrystone Dam 2A	Depth (ft): 16-18
Project No.:	R-2023-070-001	Sample No.: UD-02
Lab ID:	R-2023-070-001-003	Visual Description: Orange Silty Sand

(MInus No.4 sieve material, oven dried)

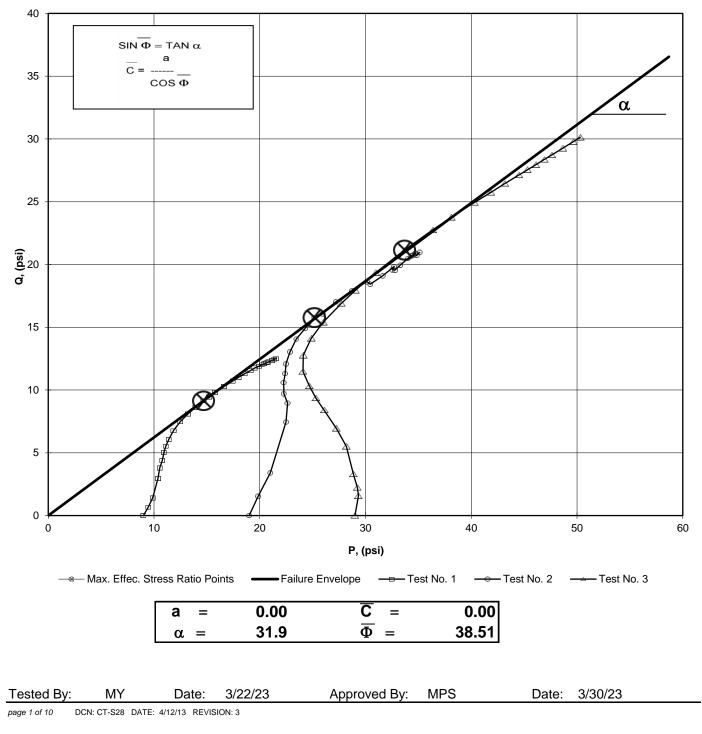
Replicate Number	1	2
Pycnometer ID:	R 543	R 544
Weight of Pycnometer & Soil & Water (g):	695.88	698.51
Temperature (°C):	23.7	23.7
Weight of Pycnometer & Water (g):	661.21	663.68
Tare Number:	543	544
Weight of Tare & Dry Soil (g):	217.89	220.53
Weight of Tare (g):	163.18	165.86
Weight of Dry Soil (g):	54.71	54.67
Specific Gravity of Soil @ Measured Temperature:	2.730	2.756
Specific Gravity of Water @ Measured Temperature:	0.99738	0.99738
Conversion Factor for Measured Temperature:	0.99917	0.99917
Specific Gravity @ 20° Celsius:	2.732	2.758

Average Specific Gravity @ 20° Celsius

2.75

Tested By	RFF	Date	4/4/23	Checked By	GEM	Date	4/4/23
-----------	-----	------	--------	------------	-----	------	--------

page 1 of 1 DCN: CT-S5 DATE: 3/26/18 REVISION: 21

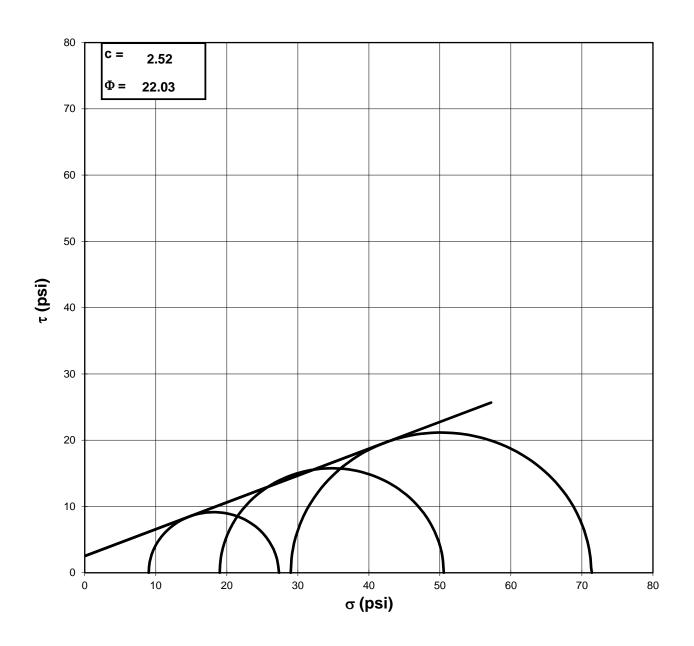

ASTM D4767-11

Client: Client Reference: Project No.: Lab ID:

Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-003

Boring No.: Depth (ft): Sample No.: B-651B 16-18 UD-02

Consolidated Undrained Triaxial Test with Pore Pressure



MOHR TOTAL STRENGTH ENVELOPE

ASTM D4767-11

Client: Client Reference: Project No.: Lab ID: Visual Description: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-003 Orange Silt (Undisturbed)

Boring No.: Depth (ft): Sample No.: B-651B 16-18 UD-02

Failure Based on Maximum Effective Principal Stress Ratio

NOTE: GRAPH NOT TO SCALE

 Tested By:
 MY
 Date:
 3/22/23
 Approved By:
 MPS
 Date:
 3/30/23

 page 2 of 10
 DCN: CT-S28
 DATE:
 4/12/13
 REVISION: 3
 Date:
 3/30/23

ASTM D4767-11

Client: Schnabel Engineering, Inc. Client Reference: Project No.: Lab ID:

Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-003

> 0 1

14.69

9.15

Boring No.: Depth (ft): Sample No.: B-651B 16-18 UD-02

Visual Description: Orange Silt (Undisturbed)

Stage No. Test No.	
PRESSURES (psi)	

Cell Pressure (psi)	69.0
Back Pressure (psi)	60.0
Eff. Conf. Pressure (psi)	9.0
Pore Pressure	
Response (%)	97

INITIAL SAMPLE DIMENSIONS (in)

Length 1:	6.154	Diameter 1:	2.841
Length 2:	6.091	Diameter 2:	2.836
Length 3:	6.100	Diameter 3:	2.834
Avg. Length:	6.115	Avg. Diam.:	2.837

VOLUME CHANGE

24.0
7.1
16.9

Initial Dial Reading (mil)	320
Dial Reading After Saturation (mil)	372
Dial Reading After Consolidation (mil)	387

a =	5.15		Dial Reading After Oc		507	
LOAD		DEFORMAT	ION	PORE PRESSUR	RE	
(LB)		(IN)		(PSI)		
14.3		0.000		60.0		
22.3		0.001		60.2		
31.5		0.003		60.5		
50.3		0.008		61.6		
60.5		0.014		62.3		
67.7		0.020		62.6		
75.5		0.030		63.1		
81.7		0.039		63.4		
88.2		0.051		63.7		
97.3		0.072		63.9		
106.5		0.103		64.0		
114.9		0.139		63.9		
121.8		0.176		63.7		
129.3		0.219		63.5		
133.7		0.249		63.2		
139.0		0.291		63.0		
146.5		0.350		62.7		
153.6		0.411		62.3		
158.6		0.456		62.0		
164.0		0.518		61.7		
168.6		0.564		61.4		
172.6		0.609		61.2		
176.1		0.655		61.0		
178.5		0.685		60.8		
180.8		0.716		60.7		
182.6		0.746		60.5		
184.3		0.777		60.4		
187.6		0.823		60.2		
190.5		0.869		60.1		
192.3		0.900		60.0		
194.0		0.931		59.9		
Tested By: MY	Date: 3/22/2	3	Input Checked By:	GEM	Date:	3/30/23
DADE 3 of 10 DON: CT-S28 DATE: 4/1	12/13 REV/ISION: 3					

page 3 of 10 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

MAXIMUM OBLIQUITY POINTS

Ρ

Q

=

=

ASTM D4767-11

Client: Client Reference: Project No.: Lab ID:	Schnabel Er Cherrystone R-2023-070 R-2023-070	Dam 2A -001	nc.	Boring No.: Depth (ft): Sample No.:	B-651B 16-18 UD-02		
Visual Description:	Orange Silt	(Undisturbed	d)				
Effective Confining F	Pressure (psi)	9.0		Stage No. Test No		0 1	
INITIAL DIMENSION	IS			VOLUME CHANGE			
Initial Sample Length Initial Sample Diame Initial Sample Area (Initial Sample Volum	ter (in) in²)	6.12 2.84 6.32 38.65		Volume After Consoli Length After Consolic Area After Consolidat	lation (in)		36.64 6.05 6.058
Strain Deviato (%) Stress PSI		$\overline{\sigma}_1$	$\overline{\sigma}_3$	Effective Principal Stress Ratio	Ā	P	Q
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.20 0.54 1.59 2.26 2.60 3.08 3.42 3.67 3.92 3.99 3.70 3.46 3.23 3.01 2.65 2.26 2.02 1.70 1.42 1.23 0.97 0.82 0.68 0.55 0.42 0.19 0.07 -0.04 -0.14	10.12 11.30 13.35 14.34 15.18 15.97 16.64 17.44 18.61 19.97 21.33 22.53 23.84 24.66 25.58 26.91 28.18 29.00 29.90 30.68 31.27 31.85 32.21 32.54 32.54 32.53 32.54 32.54 32.53 33.83 34.05 34.24	$\begin{array}{c} 8.8\\ 8.5\\ 7.4\\ 6.7\\ 6.4\\ 9.6\\ 5.5\\ 5.5\\ 5.5\\ 5.8\\ 6.3\\ 7.0\\ 7.6\\ 8.0\\ 2.3\\ 8.5\\ 8.8\\ 8.9\\ 9.1\\ \end{array}$	1.149 1.336 1.801 2.129 2.373 2.698 2.980 3.269 3.269 3.665 3.986 4.177 4.248 4.300 4.273 4.274 4.239 4.181 4.157 4.097 4.049 4.025 3.964 3.938 3.912 3.881 3.851 3.806 3.789 3.746	0.15 0.20 0.28 0.31 0.32 0.32 0.32 0.32 0.30 0.28 0.25 0.22 0.19 0.18 0.16 0.13 0.11 0.09 0.08 0.06 0.05 0.04 0.02 0.02 0.02 0.01 0.00 -0.01	9.46 9.88 10.38 10.54 10.79 10.94 11.11 11.39 13.22 13.91 14.69 15.22 15.78 16.63 17.46 17.99 18.60 19.13 19.52 19.94 20.19 20.43 20.63 20.81 21.17 21.38 21.54 21.69	0.66 1.42 2.97 3.80 4.39 5.02 5.53 6.05 6.76 7.48 8.11 8.61 9.15 9.45 9.80 10.28 10.72 11.01 11.55 11.75 11.91 12.01 12.11 12.11 12.11 12.13 12.23 12.50 12.55

technics geotechnical & geosynthetic testing

е

378 420

ASTM D4767-11

	ASTM D4	707-11			
Client: Client Reference: Project No.: Lab ID:	Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-003	Boring No.: Depth (ft): Sample No.:		B-651B 16-18 UD-02	
Visual Description:	Orange Silt (Undisturbed)				
Stage No.	0	INITIAL SAM		IENSIONS (in)	
Test No.	2				
		Length 1:	6.183	Diameter 1:	2.844
PRESSURES (psi)		Length 2:	6.124	Diameter 2:	2.787
		Length 3:	6.198	Diameter 3:	2.893
Cell Pressure (psi)	79.0	Avg. Length	6.168	Avg. Diam.:	2.841
Back Pressure (psi)	60.0				
Eff. Conf. Pressure (psi)	19.0	VOLUME CI	HANGE		
Pore Pressure		Initial Burette	e Reading	ı (ml)	48.0
Response (%)	95	Final Burette	Reading	(ml)	20.1
		Final Chang	e (ml)		27.9
MAXIMUM OBLIQUITY	POINTS				
_		Initial Dial Ro	eading (m	il)	292

Q	=	15.77	Dial Reading After Consolidation (mil)
Р	=	25.16	Dial Reading After Saturation (mil)
			Initial Dial Reading (mil)

	LOAD		DE	FORMAT	ION	PORE PRESS	URE	-
	(LB)			(IN)		(PSI)		
	19.5			0.000		60.0		•
	37.8			0.000		60.7		
	59.9			0.002		61.4		
	108.0			0.007		64.0		
	125.8			0.013		65.3		
	134.7			0.019		66.4		
	145.7			0.029		67.3		
	154.3			0.037		67.9		
	163.8			0.049		68.6		
	175.8			0.070		69.2		
	188.9			0.101		69.6		
	200.0			0.137		69.6		
	211.9			0.174		69.6		
	216.9			0.217		69.1		
	229.8			0.248		68.8		
	242.5			0.291		68.2		
	253.7			0.348		67.5		
	253.6			0.409		67.0		
	264.2			0.455		66.5		
	276.5			0.516		66.1		
	275.4			0.563		66.1		
	276.9			0.608		65.8		
	284.4			0.653		65.7		
	292.9			0.684		65.5		
	297.4			0.714		65.4		
	300.1			0.746		65.3		
	303.4			0.776		65.2		
	305.6			0.822		65.2		
	306.3			0.867		64.9		
	311.1			0.897		64.8		
	316.4			0.928		64.8		
ested By:	MY	Date:	3/22/23		Input Checked By:	GEM	Date:	3/30/23

geotechnical & geosynthetic testing

Client:	Schnabel Engineering, Inc.	Boring No.:	B-651B
Client Reference:	Cherrystone Dam 2A	Depth (ft):	16-18
Project No.: Lab ID:	R-2023-070-001 R-2023-070-001-003	Sample No.:	UD-02

Visual Description: Orange Silt (Undisturbed)

Effective (Confining Pres	ssure (psi)	19.0		Stage No. Test No		0 2	
Initial Sam Initial Sam Initial Sam	IMENSIONS aple Length (in aple Diameter aple Area (in ²) aple Volume (i	(in)	6.17 2.84 6.34 39.11		VOLUME CHANGE Volume After Consolid Length After Consolidat Area After Consolidatio	ation (in)		35.77 6.04 5.922
Strain (%)	Deviator Stress PSI	ΔU	$\overline{\sigma}_1$	$\overline{\sigma}_3$	Effective Principal Stress Ratio	Ā	P	Q
0.01 0.03 0.12 0.21 0.32 0.47 0.62 0.81 1.16 1.66 2.27 2.89 3.58 4.11 4.82 5.77 6.76 7.53 8.55 9.32 10.06 10.81 11.32 12.34 12.34 12.34 12.34 12.34 14.36 14.35 15.37	3.10 6.82 14.92 17.92 19.40 21.22 22.63 24.18 26.09 28.13 29.79 31.55 32.15 34.06 35.84 37.26 36.86 38.21 39.69 39.19 39.09 39.89 40.94 41.39 41.54 41.78 41.74 41.48 41.92 42.43	0.70 1.41 3.98 5.33 6.41 7.35 7.91 8.60 9.18 9.62 9.62 9.61 9.14 8.82 8.19 7.50 6.97 6.47 6.14 6.06 5.66 5.48 5.35 5.26 5.17 4.92 4.83 4.76	$\begin{array}{c} 21.40\\ 24.41\\ 29.94\\ 31.59\\ 31.99\\ 32.87\\ 33.71\\ 34.58\\ 35.90\\ 37.51\\ 39.18\\ 40.94\\ 42.01\\ 44.24\\ 46.65\\ 48.76\\ 48.89\\ 50.74\\ 52.55\\ 52.14\\ 52.55\\ 52.14\\ 52.55\\ 52.14\\ 52.53\\ 53.23\\ 54.46\\ 55.03\\ 55.28\\ 55.61\\ 55.57\\ 55.56\\ 56.09\\ 56.67\\ \end{array}$	$\begin{array}{c} 18.3\\ 17.6\\ 15.0\\ 13.7\\ 12.6\\ 11.7\\ 11.1\\ 10.4\\ 9.8\\ 9.4\\ 9.4\\ 9.4\\ 9.9\\ 10.2\\ 10.8\\ 11.5\\ 12.0\\ 12.5\\ 12.9\\ 13.2\\ 13.6\\ 13.7\\ 13.8\\ 13.5\\ 13.6\\ 13.7\\ 13.8\\ 14.1\\ 14.2\\ 14.2\end{array}$	$\begin{array}{c} 1.169\\ 1.387\\ 1.993\\ 2.310\\ 2.541\\ 2.821\\ 3.040\\ 3.325\\ 3.658\\ 3.998\\ 4.175\\ 4.360\\ 4.259\\ 4.345\\ 4.317\\ 4.241\\ 4.064\\ 4.050\\ 4.087\\ 4.028\\ 3.953\\ 3.991\\ 4.028\\ 3.953\\ 3.991\\ 4.028\\ 4.033\\ 4.023\\ 4.020\\ 4.017\\ 3.946\\ 3.959\\ 3.979\end{array}$	0.24 0.22 0.28 0.31 0.35 0.36 0.37 0.37 0.37 0.36 0.34 0.32 0.30 0.27 0.24 0.21 0.20 0.18 0.16 0.16 0.16 0.16 0.15 0.14 0.13 0.13 0.12 0.12 0.12	$19.85 \\ 21.00 \\ 22.48 \\ 22.63 \\ 22.29 \\ 22.26 \\ 22.40 \\ 22.49 \\ 22.86 \\ 23.44 \\ 24.28 \\ 25.16 \\ 25.94 \\ 27.21 \\ 28.73 \\ 30.13 \\ 30.46 \\ 31.63 \\ 32.70 \\ 32.54 \\ 33.28 \\ 33.99 \\ 34.34 \\ 34.51 \\ 34.72 \\ 34.70 \\ 34.82 \\ 35.13 \\ 35.46 \\ $	1.55 3.41 7.46 8.96 9.70 10.61 11.31 12.09 13.04 14.06 14.90 15.77 16.07 17.03 17.92 18.63 18.43 19.10 19.85 19.60 19.55 19.95 20.47 20.69 20.77 20.89 20.77 20.89 20.74 20.96 21.21

page 6 of 10

ASTM D4767-11

2.859

Client: Client Reference: Project No.: Lab ID:

Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-003

33.70

21.16

Boring No.: Depth (ft): Sample No.:

Length 1:

B-651B 16-18 UD-02

Diameter 1:

Visual Description: Orange Silt (Undisturbed)

0	Stage No.
3	Test No.
	1031110.

PRESSURES (psi)

=

=

Ρ

Q

89.0
60.0
29.0
99

MAXIMUM OBLIQUITY POINTS

VOLUME CH	IANGE		
Avg. Length:	6.156	Avg. Diam.:	2.849
Length 3:	6.159	Diameter 3:	2.848
Length 2:	6.136	Diameter 2:	2.841

INITIAL SAMPLE DIMENSIONS (in)

6.172

Initial Burette Reading (ml)	72.0
Final Burette Reading (ml)	0.6
Final Change (ml)	71.4

Initial Dial Reading (mil)	286
Dial Reading After Saturation (mil)	308
Dial Reading After Consolidation (mil)	365

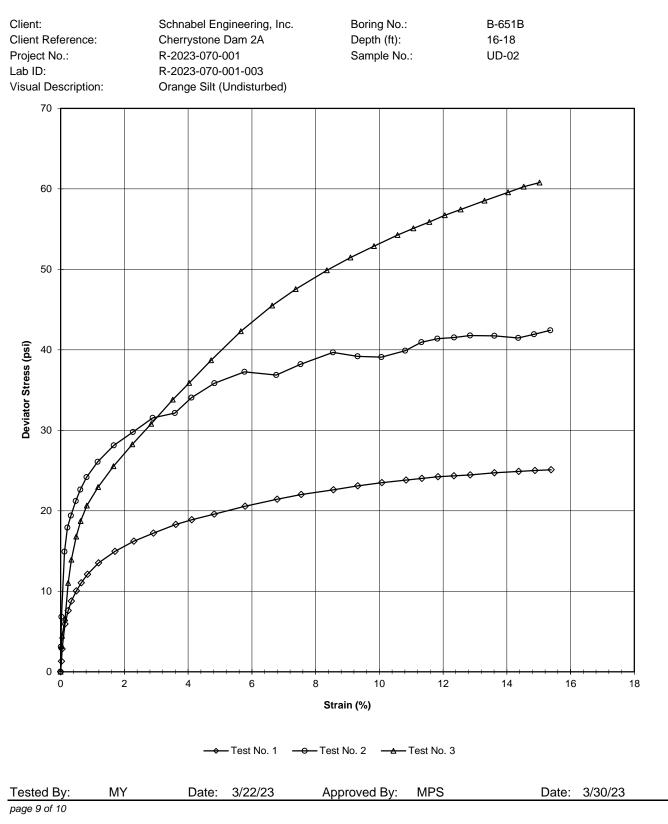
	LOAD		DE	FORMAT	ION	PORE PRES	SURE	=
	(LB)			(IN)		(PSI)		
	12.3			0.000		60.0		-
	30.1			0.001		61.2		
	37.6			0.003		62.0		
	49.9			0.009		63.5		
	75.0			0.014		66.3		
	91.5			0.021		68.7		
	108.0			0.030		71.3		
	119.1			0.038		73.0		
	130.3			0.050		74.6		
	144.0			0.072		76.4		
	159.6			0.101		77.7		
	176.2			0.137		78.2		
	192.1			0.173		78.4		
	211.0			0.214		78.2		
	224.4			0.245		77.9		
	242.7			0.287		77.4		
	266.7			0.344		76.5		
	288.7			0.403		75.4		
	303.5			0.448		74.6		
	321.0			0.508		73.6		
	333.5			0.553		72.9		
	345.0			0.597		72.3		
	356.5			0.642		71.6		
	363.7			0.673		71.2		
	370.8			0.703		70.8		
	378.2			0.733		70.5		
	384.9			0.763		70.1		
	395.2			0.808		69.6		
	405.4			0.853		69.1		
	412.3			0.883		68.8		
	418.0			0.913		68.5		
ested By:	MY	Date:	3/22/23		Input Checked By:	GEM	Date:	3/30/2

page 7 of 10 DCN: CT-S28 DATE: 4/12/13 REVISION: 3

geotechnical & geosynthetic testing

CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS

ASTM D4767-11


Client: Client Refe Project No Lab ID:		Schnabel E Cherrystone R-2023-070 R-2023-070	0-001	Inc.	Boring No.: Depth (ft): Sample No.:	B-651B 16-18 UD-02		
Visual Des	scription:	Orange Silt	(Undisturbe	ed)				
Effective (Confining Pr	essure (psi)	29.0		Stage No. Test No		0 3	
INITIAL D		S			VOLUME CHANGE			
Initial Sam Initial Sam	ple Length ple Diamete ple Area (in ple Volume	er (in) ¹²)	6.16 2.85 6.38 39.25		Volume After Consoli Length After Consolic Area After Consolidat	lation (in)		34.47 6.08 5.673
Strain (%)	Deviator Stress PSI	ΔU	$\overline{\sigma}_1$	$\overline{\sigma}_3$	Effective Principal Stress Ratio	Ā	P	Q
0.02 0.05 0.14 0.24 0.34 0.49 0.63	3.15 4.46 6.62 11.03 13.93 16.79	1.24 2.00 3.46 6.34 8.73 11.31	30.91 31.46 32.16 33.70 34.20 34.49	27.8 27.0 25.5 22.7 20.3 17.7 16.0	1.114 1.165 1.259 1.487 1.687 1.949 2.174	0.40 0.45 0.53 0.58 0.63 0.68 0.70	29.33 29.23 28.85 28.18 27.23 26.09 25.31	1.58 2.23 3.31 5.52 6.96 8.40 9.36

0.14	6.62	3.46	32.16	25.5	1.259	0.53	28.85	3.31
0.24	11.03	6.34	33.70	22.7	1.487	0.58	28.18	5.52
0.34	13.93	8.73	34.20	20.3	1.687	0.63	27.23	6.96
0.49	16.79	11.31	34.49	17.7	1.949	0.68	26.09	8.40
0.63	18.72	13.05	34.67	16.0	2.174	0.70	25.31	9.36
0.82	20.64	14.63	35.01	14.4	2.436	0.72	24.69	10.32
1.18	22.95	16.38	35.56	12.6	2.819	0.72	24.09	11.47
1.66	25.54	17.66	36.88	11.3	3.253	0.70	24.11	12.77
2.25	28.25	18.25	39.00	10.8	3.628	0.65	24.88	14.13
2.84	30.80	18.40	41.40	10.6	3.907	0.60	26.00	15.40
3.52	33.80	18.19	44.62	10.8	4.126	0.54	27.72	16.90
4.03	35.89	17.90	46.99	11.1	4.234	0.50	29.04	17.94
4.72	38.71	17.39	50.32	11.6	4.334	0.45	30.96	19.35
5.65	42.31	16.46	54.85	12.5	4.374	0.39	33.70	21.16
6.64	45.50	15.41	59.09	13.6	4.347	0.34	36.34	22.75
7.37	47.55	14.64	61.90	14.4	4.312	0.31	38.13	23.77
8.35	49.88	13.64	65.24	15.4	4.248	0.28	40.30	24.94
9.09	51.48	12.91	67.56	16.1	4.200	0.25	41.83	25.74
9.83	52.89	12.27	69.62	16.7	4.161	0.23	43.18	26.45
10.57	54.26	11.63	71.64	17.4	4.124	0.22	44.51	27.13
11.07	55.09	11.23	72.86	17.8	4.101	0.21	45.31	27.54
11.57	55.88	10.85	74.04	18.2	4.078	0.20	46.10	27.94
12.06	56.72	10.47	75.25	18.5	4.062	0.19	46.89	28.36
12.55	57.44	10.13	76.31	18.9	4.045	0.18	47.59	28.72
13.30	58.53	9.61	77.92	19.4	4.018	0.17	48.66	29.26
14.04	59.58	9.13	79.44	19.9	3.999	0.15	49.66	29.79
14.53	60.27	8.83	80.44	20.2	3.988	0.15	50.31	30.13
15.02	60.78	8.52	81.26	20.5	3.968	0.14	50.87	30.39

page 8 of 10

ASTM D4767-11

ASTM D4767-11

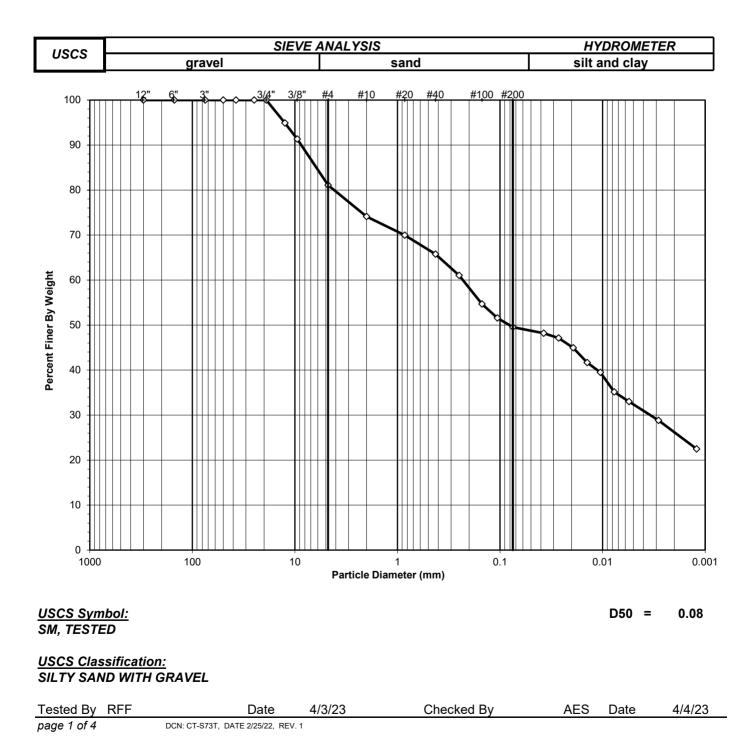
Client:	Schnabel Engineering, Inc.		
Client Reference:	Cherrystone Dam 2A		
Project No.:	R-2023-070-001		
Lab ID:	R-2023-070-001-003	Specific Gravity (Assumed)	2.7

Visual Description: Orange Silt (Undisturbed)

SAMPLE CONDITION SUMMARY

Boring No.:	B-651B	B-651B	B-651B
Depth (ft):	16-18	16-18	16-18
Sample No.:	UD-02	UD-02	UD-02
Test No.	T1	T2	Т3
Deformation Rate (in/min)	0.002	0.002	0.002
Back Pressure (psi)	60.0	60.0	60.0
Consolidation Time (days)	1	1	1
Moisture Content (%) (INITIAL)	16.7	16.7	16.7
Total Unit Weight (pcf)	122.3	126.4	127.1
Dry Unit Weight (pcf)	104.8	108.3	108.9
Moisture Content (%) (FINAL)	21.2	20.1	17.9
Initial State Void Ratio,e	0.608	0.556	0.547
Void Ratio at Shear, e	0.524	0.423	0.359

Tested By: page 10 of 10


DCN: CT-S28 DATE: 4/12/13 REVISION: 3

Input Checked By:

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-004 Boring No.: Depth (ft): Sample No.: Soil Color: B-651A 28-30 UD-01 Orange Brown

ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-004

Boring No.: Depth (ft): Sample No.: Soil Color: B-651A 28-30 UD-01 Orange Brown

Moisture C	Content of Pass	ing 3/4" Material		Mois	ture Content of Retained	3/4" Material	
Tare No.:				473	Tare No.:		NA
Wt. of Tar	e & Wet Sampl	e (g):	30	01.64	Weight of Tare & Wet Sa	mple (g):	NA
	e & Dry Sample		27	70.60	Weight of Tare & Dry Sar		NA
Weight of			9	7.82	Weight of Tare (g):	. (0)	NA
Weight of	Water (g):		3	1.04	Weight of Water (g):		NA
Weight of	Dry Soil (g):		17	72.78	Weight of Dry Soil (g):		NA
Moisture Content (%):				8.0 Moisture Content (%):			0.0
Dry Weight of Sample (g):				NA Total Dry Weight of Sample (g):		ole (g):	172.78
Tare No. (Sub-Specimen)			473		Wet Weight of +3/4" Sam	0.00	
Wt. of Tare & Wet Sub-Specimen (g):			30	01.64	Dry Weight of + 3/4" Sam	0.00	
Weight of Tare (g):			9	7.82	Dry Weight of - 3/4" Sam	ple (g):	172.78
	imen Wet Weig	ht (g):	203.82		Dry Weight -3/4" +3/8" Sa	ample (g):	14.96
-	-3/8" Sub-Spec			NA	Dry Weight of -3/8" Samp	157.82	
Wt. of Tar	e & Wet -3/8" S	Sub-Specimen (g):			J - Factor (% Finer than 3	NA	
Weight of	Tare (g):			NA	J - Factor (% Finer than 3		
Sub-Spec	imen -3/8" Wet	Weight (g):		NA			
Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100
6"	150	0.00		0.00	0.00	100.00	100
3"	75	0.00		0.00	0.00	100.00	100
2"	50	0.00	(*)	0.00	0.00	100.00	100
1 1/2"	37.5	0.00		0.00	0.00	100.00	100
1"	25	0.00		0.00	0.00	100.00	100
2//"	10	0.00		0.00	0.00	100.00	400

3/4" 0.00 0.00 0.00 100.00 100 19 1/2" 12.5 8.79 5.09 5.09 94.91 95 (**) 3/8" 6.17 3.57 91 9.5 8.66 91.34 #4 4.75 17.70 10.24 18.90 81.10 81 #10 2 12.04 6.97 25.87 74.13 74 #20 0.85 7.19 (**) 4.16 30.03 69.97 70 65.77 #40 0.425 7.25 4.20 34.23 66 #60 0.25 8.19 4.74 38.97 61.03 61 #100 0.15 10.96 6.34 45.31 54.69 55 #140 0.106 5.41 3.13 48.44 51.56 52 #200 0.075 3.50 2.03 50.47 49.53 50 85.58 49.53 Pan 100.00 ---

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	RFF	Date	4/3/23	Checked By	AES	Date	4/4/23
page 3 of 4		DCN: CT-S73T, DATE 2/25/22, REV.					

HYDROMETER ANALYSIS

ASTM D7928-21

Client: Client Reference:	Schnabel Engineering, Inc. Cherrystone Dam 2A	Boring No.: Depth (ft):	B-651A 28-30	
Project No.:	R-2023-070-001	Sample No.:	UD-01	
Lab ID:	R-2023-070-001-004	Soil Color:	Orange Brown	

Elapsed ſime (min)	Reading rm	Temp. (C [°])	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm
0	NA	NA	NA	NA	NA	NA	NA
1	47.0	22.7	2.67	8.2	0.0375	97.3	48.2
2	46.0	22.7	2.67	8.4	0.0268	95.1	47.1
4	44.0	22.7	2.67	8.7	0.0194	90.7	44.9
8	41.0	22.7	2.67	9.3	0.0141	84.1	41.7
15	39.0	22.7	2.67	9.6	0.0105	79.7	39.5
30	35.0	22.7	2.67	10.3	0.0077	71.0	35.1
60	33.0	22.8	2.64	10.7	0.0055	66.7	33.0
240	29.0	23.2	2.49	11.4	0.0028	58.2	28.8
1440	23.0	23.6	2.33	12.5	0.0012	45.4	22.5

Tare No.:	7	Percent Finer than # 200:	49.53
Wt. of Tare & Dry Material (g):	381.07		
Weight of Tare (g):	331.12	Specific Gravity:	2.71 Measured
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	44.95		

Notes: Hydrometer test is performed on - # 200 sieve material.

Hydrometer - 152H	R- 481
Cylinder	R- 691
Thermometer	R- 350
Balance	R- 279
#200 Sieve	R- 632
Foam Inhibitor Used	No

Tested By	RFF	Date	3/24/23	Checked By	AES	Date	3/27/23
page 4 of 4							

ATTERBERG LIMITS

ASTM D 4318-17

	e "Sieve and Hyd ved Moisture STM D2216-19 ample (g): ample (g): le (g):	am 2A 01 01-004 is test refers on <u>Irometer Analys</u> Content 440 315.56 280.71 99.40 34.9 181.3	-	Soil ne minus N	o. 40 or the compl	28-30 : UD-01 : ORANGE BRC (Minus #40 sieve r	material, Wet Pre c ription .	ep.)
Moisture Content (Yes 19.2		38.8 35	44.4 25	51.8 15	N T	
					25	-	•	
Plastic Limit Tes Tare Number: Wt. of Tare & Wet S Wt. of Tare & Dry Sa Weight of Tare (g): Weight of Water (g): Weight of Dry Samp	ample (g): ample (g):	1 2 D-1 O 21.63 21.6 19.97 19.9 15.19 15.7 1.7 1.7 4.8 4.8	50 93 12	Range		Test Result Liquid Limit (Plastic Limit (Plasticity Inde	%): 2 (%): 3	44 35 9
Moisture Content (Note: The acceptabl	%):	34.7 34.	7	0.0 is ±	0.84 P	USCS Symbo	I: N	ИL
55 50 45 40 40 35 30 30			Plasticity Index (%)		CL	СН	мн	
Tested By CFD	10 Number of Blow Date 3	s	00 Checke	CL- ML		40 60 quid Limit (%)	80 100)

SPECIFIC GRAVITY

AASHTO T-100-15

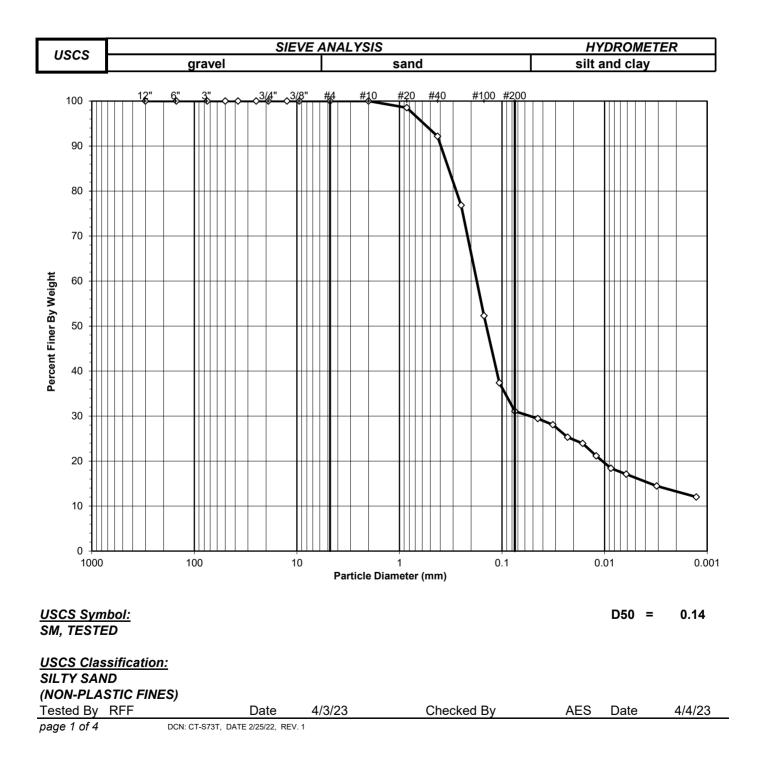
Client: Client Reference:	Schnabel Engineering, Inc Cherrystone Dam 2A	Depth (ft):	28-30
Project No.:	R-2023-069-001	Sample No.:	UD-01
Lab ID:	R-2023-069-001-004	Visual Description:	Orange Brown Silty Sand with Gravel
		(MInus No.4 sieve material, oven dried)	

Replicate Number	1	2
Pycnometer ID:	R 543	R 544
Weight of Pycnometer & Soil & Water (g):	695.07	697.64
Temperature (°C):	23.3	23.4
Weight of Pycnometer & Water (g):	661.26	663.72
Tare Number:	543	544
Weight of Tare & Dry Soil (g):	216.82	219.54
Weight of Tare (g):	163.19	165.86
Weight of Dry Soil (g):	53.63	53.68
Specific Gravity of Soil @ Measured Temperature:	2.706	2.717
Specific Gravity of Water @ Measured Temperature:	0.99747	0.99745
Conversion Factor for Measured Temperature:	0.99926	0.99924
Specific Gravity @ 20° Celsius:	2.708	2.719

Average Specific Gravity @ 20° Celsius
--

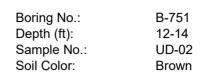
2.71

Tested By	RFF	Date	4/3/23	Checked By	GEM	Date	4/3/23
-----------	-----	------	--------	------------	-----	------	--------


page 1 of 1 DCN: CT-S5 DATE: 3/26/18 REVISION: 21

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-005 Boring No.: Depth (ft): Sample No.: Soil Color:


B-751 12-14 UD-02 Brown

ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-005

Moisture C	Content of Passi	ng 3/4" Material	Mois	ture Content of Retained 3	8/4" Material	
- N			450	– N		
Tare No.:		458	Tare No.:		NA	
	e & Wet Sample		501.44	Weight of Tare & Wet Sam		NA
Wt. of Tar	e & Dry Sample	(g):	461.35	Weight of Tare & Dry Sam	ple (g):	NA
Weight of	Tare (g):		145.92	Weight of Tare (g):		NA
Weight of	Water (g):		40.09	Weight of Water (g):		NA
Weight of	Dry Soil (g):		315.43	Weight of Dry Soil (g):		NA
Moisture Content (%):			12.7	Moisture Content (%):		0.0
Dry Weight of Sample (g):			NA	Total Dry Weight of Sample	315.43	
Tare No. (Sub-Specimen)			458	Wet Weight of +3/4" Sample (g):		0.00
Wt. of Tare & Wet Sub-Specimen (g):			501.44	Dry Weight of + 3/4" Samp	le (g):	0.00
Weight of	Weight of Tare (g):			Dry Weight of - 3/4" Sampl	le (g):	315.43
Sub-Speci	men Wet Weigl	nt (g):	355.52	Dry Weight -3/4" +3/8" Sar	nple (g):	0.00
Tare No. (-3/8" Sub-Speci	men):	NA	Dry Weight of -3/8" Sample	e (g):	315.43
Wt. of Tar	e & Wet -3/8" S	ub-Specimen (g):	NA	J - Factor (% Finer than 3/4	NA	
Weight of		1 (0)	NA	J - Factor (% Finer than 3/8	NA	
	men -3/8" Wet	Weight (g):	NA	·		
Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	. 0			Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.0

	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	0.00	(**)	0.00	0.00	100.00	100.0
3/8"	9.5	0.00	()	0.00	0.00	100.00	100.0
#4	4.75	0.00		0.00	0.00	100.00	100.0
#10	2	0.02		0.01	0.01	99.99	100.0
#20	0.85	4.66	(**)	1.48	1.48	98.52	98.5
#40	0.425	19.98		6.33	7.82	92.18	92.2
#60	0.25	48.44		15.36	23.17	76.83	76.8
#100	0.15	77.35		24.52	47.70	52.30	52.3
#140	0.106	47.10		14.93	62.63	37.37	37.4
#200	0.075	19.89		6.31	68.93	31.07	31.1
Pan	-	97.99		31.07	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	RFF	Date	4/3/23	Checked By	AES	Date	4/4/23
page 3 of 4		DCN: CT-S73T, DATE 2/25/22, REV.	1				

HYDROMETER ANALYSIS

ASTM D7928-21

Client: Client Reference:	Schnabel Engineering, Inc. Cherrystone Dam 2A	Boring No.: Depth (ft):	B-751 12-14
Project No.:	R-2023-070-001	Sample No.:	UD-02
Lab ID:	R-2023-070-001-005	Soil Color:	Brown

Elapsed Time (min)	Reading rm	Temp. (C [°])	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm
0	NA	NA	NA	NA	NA	NA	NA
1	24.0	22.7	2.67	12.3	0.0449	94.8	29.5
2	23.0	22.7	2.67	12.5	0.0320	90.4	28.1
4	21.0	22.7	2.67	12.9	0.0229	81.5	25.3
8	20.0	22.7	2.67	13.1	0.0163	77.0	23.9
15	18.0	22.7	2.67	13.4	0.0121	68.2	21.2
30	16.0	22.7	2.67	13.8	0.0087	59.3	18.4
60	15.0	22.8	2.64	14.0	0.0062	55.0	17.1
240	13.0	23.1	2.52	14.3	0.0031	46.6	14.5
1440	11.0	23.7	2.29	14.7	0.0013	38.7	12.0

Soil Specimen Data

Tare No.:	10	Percent Finer than # 200:	31.07
Wt. of Tare & Dry Material (g):	360.67		
Weight of Tare (g):	333.89	Specific Gravity:	2.80 Measured
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	21.78		

Notes: Hydrometer test is performed on - # 200 sieve material.

Hydrometer - 152H	R- 481
Cylinder	R- 690
Thermometer	R- 350
Balance	R- 279
#200 Sieve	R- 632
Foam Inhibitor Used	No

Tested By	RFF	Date	3/24/23	Checked By	AES	Date	3/27/23
page 4 of 4							

ATTERBERG LIMITS

ASTM D 4318-17

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-005

Boring No.: Depth (ft): Sample No.: Color: B-751 12-14 UD-02 Brown (MInus No. 40 sieve material,Wet Prep.)

As Received Water Content

Water Content (%)

Tare Number	458
Wt. of Tare & Wet Sample (g)	501.44
Wt. of Tare & Dry Sample (g)	461.35
Weight of Tare (g)	145.92
Weight of Water (g)	40.09
Weight of Dry Sample (g)	315.43

12.7

NON - PLASTIC MATERIAL

Tested By CFD Date 3/24/23 Checked By AES Date 3/26/23

page 1 of 1 DCN: CT-S4C, DATE: 4/27/17, REVISION : 4e

SPECIFIC GRAVITY

AASHTO T-100-15

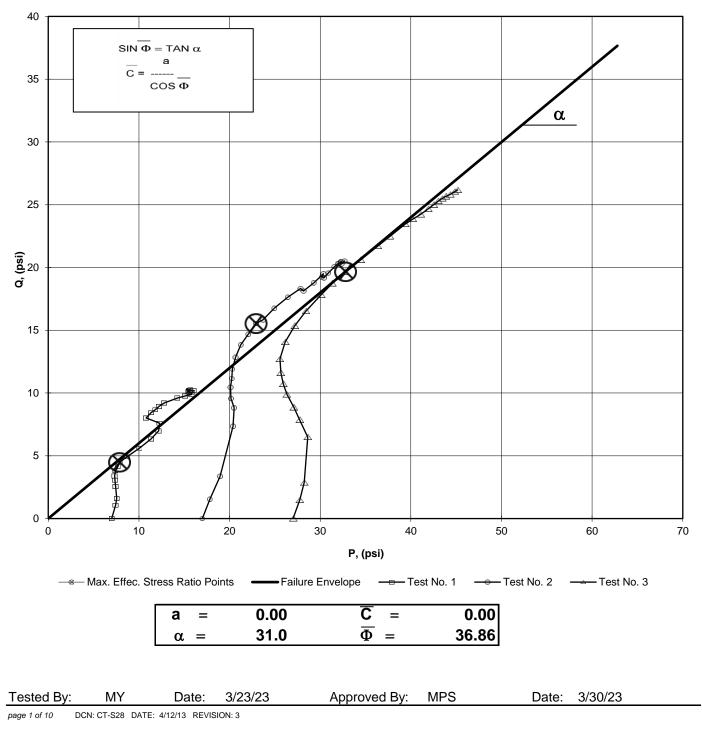
Client:	Schnabel Engineering, Inc.	Boring No.: B-751
Client Reference:	Cherrystone Dam 2A	Depth (ft): 12-14
Project No.:	R-2023-069-001	Sample No.: UD-02
Lab ID:	R-2023-069-001-005	Visual Description: Brown Silty Sand

(MInus No.4 sieve material, oven dried)

Replicate Number	1	2
Pycnometer ID:	R 711	R 714
Weight of Pycnometer & Soil & Water (g):	681.43	679.25
Temperature (°C):	24.1	24.1
Weight of Pycnometer & Water (g):	646.46	644.27
Tare Number:	711	714
Weight of Tare & Dry Soil (g):	202.97	200.67
Weight of Tare (g):	148.53	146.32
Weight of Dry Soil (g):	54.44	54.35
Specific Gravity of Soil @ Measured Temperature:	2.796	2.806
Specific Gravity of Water @ Measured Temperature:	0.99728	0.99728
Conversion Factor for Measured Temperature:	0.99907	0.99907
Specific Gravity @ 20° Celsius:	2.799	2.808

Average Specific Gravity @ 20° Celsius

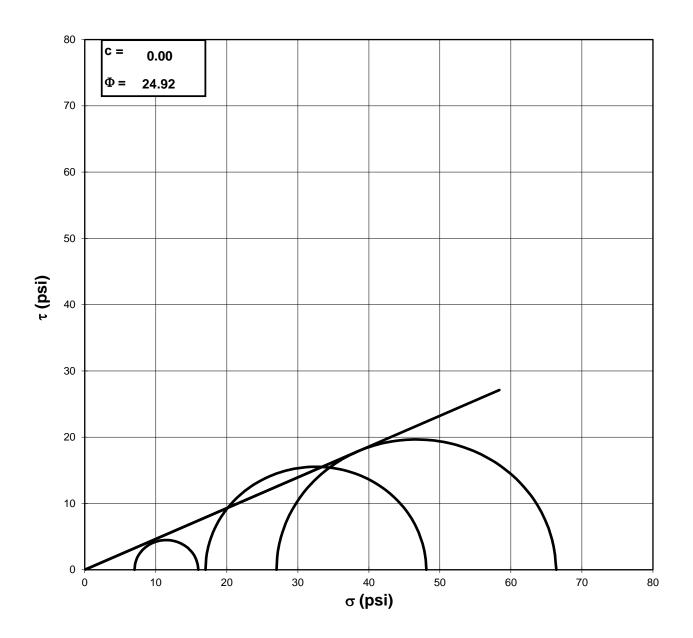
2.80


Tested By	RFF	Date	4/3/23	Checked By	GEM	Date 4/3/23
-----------	-----	------	--------	------------	-----	-------------

page 1 of 1 DCN: CT-S5 DATE: 3/26/18 REVISION: 21

Client:	Schnabel Engineering, Inc.	Boring No.:	B-751
Client Reference:	Cherrystone Dam 2A	Depth (ft):	12-14
Project No.:	R-2023-070-001	Sample No.:	UD-02
Lab ID:	R-2023-070-001-005		

Consolidated Undrained Triaxial Test with Pore Pressure



MOHR TOTAL STRENGTH ENVELOPE

ASTM D4767-11

Client: Schnabel Engineering, Inc. Boring No.: B-751 Client Reference: Cherrystone Dam 2A Depth (ft): 12-14 Project No.: R-2023-070-001 Sample No.: UD-02 Lab ID: R-2023-070-001-005 Visual Description: Brown Sandy Silt (Undisturbed)

Failure Based on Maximum Effective Principal Stress Ratio

NOTE: GRAPH NOT TO SCALE

 Tested By:
 MY
 Date:
 3/23/23
 Approved By:
 MPS
 Date:
 3/30/23

 page 2 of 10
 DCN: CT-S28
 DATE:
 4/12/13
 REVISION: 3
 Date:
 3/30/23

239

244

262

ASTM D4767-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-751
Client Reference:	Cherrystone Dam 2A	Depth (ft):	12-14
Project No.:	R-2023-070-001	Sample No.:	UD-02
Lab ID:	R-2023-070-001-005		

Visual Description:

Brown Sandy Silt (Undisturbed)

Stage No. Test No.	0
Test No.	1
PRESSURES (psi)	
FRESSORES (psi)	

Cell Pressure (psi)	67.0
Back Pressure (psi)	60.0
Eff. Conf. Pressure (psi)	7.0
Pore Pressure	
Response (%)	98

INITIAL SAMPLE DIMENSIONS (in)							
Length 1:	6.202	Diameter 1:	2.835				
Length 2:	6.158	Diameter 2:	2.838				

Length 3:	6.148	Diameter 3:	2.852
Avg. Length:	6.169	Avg. Diam.:	2.842

VOLUME CHANGE

Initial Burette Reading (ml)	48.0
Final Burette Reading (ml)	17.8
Final Change (ml)	30.2

MAXIMUM OBLIQUITY POINTS	_
	-

			Initial Dial Reading (mil)
P	=	7.87	Dial Reading After Saturation (mil)
Q	=	4.48	Dial Reading After Consolidation (mil)

L	OAD		DE	FORMAT	ION	PORE PRES	SSURE	
(LB)			(IN)		(PSI)		
;	15.0			0.000		60.0		
	28.1			0.002		60.6		
3	34.5			0.003		61.0		
4	45.9			0.008		62.1		
Ę	52.2			0.014		62.7		
	56.4			0.021		63.1		
	61.3			0.030		63.4		
	65.4			0.038		63.5		
	69.7			0.050		63.6		
	75.4			0.071		63.2		
	34.1			0.101		62.6		
	93.7			0.138		62.0		
	02.1			0.175		61.8		
	10.4			0.216		62.3		
	16.1			0.246		64.2		
	22.1			0.287		64.1		
	26.2			0.344		63.9		
	30.8			0.404		63.7		
	35.2			0.449		63.4		
	41.7			0.509		62.4		
	44.8			0.554		61.7		
	47.5			0.599		61.1		
	51.2			0.645		61.2		
	53.7			0.675		61.2		
	54.4			0.704		61.5		
	55.9			0.734		61.6		
	56.1			0.765		61.7		
	56.1			0.809		61.7		
	56.5			0.854		61.6		
	58.0			0.884		61.6		
1	59.4			0.914		61.6		
	MY 	Date:	3/23/23		Input Checked By:	GEM	Date: 3/	30/23

page 3 of 10 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

ASTM D4767-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-751
Client Reference:	Cherrystone Dam 2A	Depth (ft):	12-14
Project No.: Lab ID:	R-2023-070-001 R-2023-070-001-005	Sample No.:	UD-02

Visual Description: Brown Sandy Silt (Undisturbed)

Effective C	Confining Pres	ssure (psi)	7.0		Stage No. Test No		0 1	
INITIAL D	IMENSIONS				VOLUME CHANGE			
Initial Sample Length (in) Initial Sample Diameter (in) Initial Sample Area (in ²) Initial Sample Volume (in ³)		6.17 2.84 6.34 39.13		Volume After Consolidation (in ³) Length After Consolidation (in) Area After Consolidation (in ²)			37.19 6.15 6.051	
Strain (%)	Deviator Stress PSI	ΔU	$\overline{\sigma}_1$	$\overline{\sigma}_3$	Effective Principal Stress Ratio	Ā	P	Q
0.02 0.05 0.13 0.23 0.34 0.48	2.15 3.21 5.09 6.12 6.81 7.61	0.64 1.05 2.11 2.71 3.09 3.39	8.51 9.16 9.98 10.41 10.72 11.22	6.4 6.0 4.9 4.3 3.9 3.6	1.338 1.539 2.042 2.426 2.743 3.111	0.30 0.33 0.42 0.45 0.46 0.46	7.44 7.56 7.44 7.35 7.32 7.41	1.08 1.60 2.55 3.06 3.41 3.81
0.62 0.81 1.15 1.64 2.25 2.85 3.52 4.00 4.67 5.59	8.27 8.96 9.86 11.23 12.70 13.97 15.20 16.03 16.87 17.34	3.45 3.61 3.23 2.56 2.00 1.81 2.31 4.21 4.09 3.87	11.82 12.35 13.62 15.67 17.70 19.17 19.88 18.82 19.78 20.47	3.5 3.4 3.8 4.4 5.0 5.2 4.7 2.8 2.9 3.1	3.331 3.648 3.618 3.530 3.541 3.690 4.243 6.752 6.791 6.532	0.43 0.41 0.23 0.16 0.13 0.16 0.27 0.25 0.23	7.69 7.87 8.69 10.05 11.35 12.18 12.28 10.80 11.35 11.80	4.14 4.48 4.93 5.61 6.35 6.99 7.60 8.02 8.43 8.67
6.57 7.31 8.28 9.01 9.75 10.49 10.98 11.46 11.95	17.87 18.41 19.20 19.52 19.76 20.14 20.41 20.40 20.50	3.72 3.43 2.35 1.66 1.08 1.17 1.17 1.55 1.58	21.14 21.98 23.84 24.85 25.67 25.96 26.23 25.85 25.91	3.3 3.6 4.6 5.3 5.9 5.8 5.8 5.8 5.5 5.4	6.455 6.161 5.133 4.658 4.339 4.457 4.502 4.741 4.783	0.21 0.19 0.13 0.09 0.06 0.06 0.06 0.08 0.08	12.21 12.77 14.24 15.09 15.80 15.89 16.03 15.65 15.67	8.93 9.21 9.60 9.76 9.88 10.07 10.20 10.20 10.25
12.45 13.17 13.90 14.38 14.87	20.41 20.24 20.13 20.22 20.31	1.71 1.66 1.60 1.59 1.59	25.70 25.58 25.53 25.63 25.73	5.3 5.3 5.4 5.4 5.4	4.858 4.790 4.730 4.739 4.751	0.09 0.08 0.08 0.08 0.08	15.50 15.46 15.46 15.52 15.57	10.20 10.12 10.07 10.11 10.16

ASTM D4767-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-751	
Client Reference:	Cherrystone Dam 2A	Depth (ft):	12-14	
Project No.:	R-2023-070-001	Sample No.:	UD-02	
Lab ID:	R-2023-070-001-005			

Visual Description:

Brown Sandy Silt (Undisturbed)

Stage No.	0	INITIAL SAM		IENSIONS (in)	
Test No.	2				
		Length 1:	5.800	Diameter 1:	2.814
PRESSURES (psi)		Length 2:	5.853	Diameter 2:	2.839
		Length 3:	5.858	Diameter 3:	2.853
Cell Pressure (psi)	77.0	Avg. Length	5.837	Avg. Diam.:	2.835
Back Pressure (psi)	60.0				
Eff. Conf. Pressure (psi)	17.0	VOLUME CH	IANGE		
Pore Pressure		Initial Burette	Reading	ı (ml)	48.0
Response (%)	100	Final Burette	Reading	(ml)	11.3
		Final Change	e (ml)		36.7
MAXIMUM OBLIQUITY PO	INTS				
		Initial Dial Re	ading (m	il)	341
<u>P</u> =	22.93	Dial Reading	After Sa	turation (mil)	332
Q =	15.54	Dial Reading A	fter Conso	olidation (mil)	385

Q	=	15.54		Dial Reading After Co		385	
	LOAD		DEFORMATI	ON	PORE PRESSU	RE	
	(LB)		(IN)		(PSI)		
	19.5		0.000		60.0		-
	37.8		0.000		60.7		
	59.9		0.002		61.4		
	108.0		0.007		64.0		
	125.8		0.013		65.3		
	134.7		0.019		66.4		
	145.7		0.029		67.3		
	154.3		0.037		67.9		
	163.8		0.049		68.6		
	175.8		0.070		69.2		
	188.9		0.101		69.6		
	200.0		0.137		69.6		
	211.9		0.174		69.6		
	216.9		0.217		69.1		
	229.8		0.248		68.8		
	242.5		0.291		68.2		
	253.7		0.348		67.5		
	253.6		0.409		67.0		
	264.2		0.455		66.5		
	276.5		0.516		66.1		
	275.4		0.563		66.1		
	276.9		0.608		65.8		
	284.4		0.653		65.7		
	292.9		0.684		65.5		
	297.4		0.714		65.4		
	300.1		0.746		65.3		
	303.4		0.776		65.2		
	305.6		0.822		65.2		
	306.3		0.867		64.9		
	311.1		0.897		64.8		
	316.4		0.928		64.8		
Tested	By: MY	Date: 3/23/23	3	Input Checked By:	GEM	Date:	3/30/2

page 5 of 10 DCN: CT-S28 DATE: 4/12/13 REVISION: 3

geotechnical & geosynthetic testing

Client:	Schnabel Engineering, Inc.	Boring No.:	B-751
Client Reference:	Cherrystone Dam 2A	Depth (ft):	12-14
Project No.:	R-2023-070-001	Sample No.:	UD-02
Lab ID:	R-2023-070-001-005		

Visual Description: Brown Sandy Silt (Undisturbed)

Effective (Confining Pres	ssure (psi)	17.0		Stage No. Test No		0 2		
INITIAL DIMENSIONS Initial Sample Length (in) Initial Sample Diameter (in) Initial Sample Area (in ²) Initial Sample Volume (in ³)		tial Sample Length (in) 5.84 tial Sample Diameter (in) 2.84 tial Sample Area (in²) 6.31		le Length (in)5.84Volume Afle Diameter (in)2.84Length Afterle Area (in²)6.31Area After		VOLUME CHANGE Volume After Consolida Length After Consolida Area After Consolidatio	onsolidation (in ³) nsolidation (in)		
Strain (%)	Deviator Stress PSI	ΔU	$\overline{\sigma}_1$	$\overline{\sigma}_3$	Effective Principal Stress Ratio	Ā	P	Q	
0.01 0.03 0.13 0.22 0.33 0.49 0.64 0.85 1.21 1.74 2.37 3.01 3.74 4.28 5.03 6.01 7.05 7.85 8.91 9.71 10.49 11.27 11.80 12.32 12.87 13.40 14.19 14.97 15.49 16.02	3.05 6.72 14.72 17.67 19.13 20.92 22.31 23.84 25.72 27.72 29.36 31.08 31.66 33.53 35.28 36.65 36.24 37.55 38.99 38.48 38.37 39.14 40.16 40.58 40.72 40.95 40.89 40.62 41.04 41.52	0.70 1.41 3.98 5.33 6.41 7.35 7.91 8.60 9.18 9.62 9.62 9.61 9.14 8.82 8.19 7.50 6.97 6.47 6.14 6.06 5.76 5.66 5.48 5.35 5.26 5.17 5.17 4.92 4.83 4.76	$\begin{array}{c} 19.35\\ 22.32\\ 27.74\\ 29.34\\ 29.72\\ 30.57\\ 31.40\\ 32.24\\ 33.53\\ 35.10\\ 36.74\\ 38.47\\ 39.52\\ 41.71\\ 44.08\\ 46.15\\ 46.27\\ 48.08\\ 49.85\\ 49.43\\ 49.61\\ 50.48\\ 51.68\\ 52.23\\ 52.76\\ 52.78\\ 52.72\\ 52.70\\ 53.20\\ 53.77\end{array}$	$\begin{array}{c} 16.3\\ 15.6\\ 13.0\\ 11.7\\ 10.6\\ 9.7\\ 9.1\\ 8.4\\ 7.4\\ 7.4\\ 7.9\\ 8.2\\ 8.8\\ 9.5\\ 10.0\\ 10.5\\ 10.9\\ 11.2\\ 11.3\\ 11.5\\ 11.6\\ 11.7\\ 11.8\\ 12.1\\ 12.2\\ 12.2 \end{array}$	1.187 1.431 2.130 2.513 2.807 3.168 3.455 3.839 4.291 4.756 4.976 5.205 5.025 5.025 5.025 5.099 5.006 4.859 4.614 4.568 4.591 4.516 4.415 4.452 4.485 4.485 4.460 4.455 4.362 4.373 4.391	0.23 0.21 0.27 0.30 0.34 0.35 0.36 0.36 0.33 0.29 0.26 0.23 0.20 0.19 0.17 0.16 0.15 0.14 0.13 0.13 0.13 0.12 0.12 0.11	17.83 18.96 20.38 20.51 20.15 20.11 20.24 20.67 21.24 22.06 22.93 23.69 24.94 26.44 27.83 28.15 29.30 30.35 30.19 30.42 30.91 31.60 31.94 32.10 32.31 32.28 32.69 33.01	1.53 3.36 7.36 8.83 9.57 10.46 11.15 11.92 12.86 13.86 14.68 15.54 15.54 15.54 15.53 16.76 17.64 18.33 18.12 18.78 19.49 19.24 19.19 19.57 20.08 20.29 20.36 20.47 20.44 20.52 20.76	

page 6 of 10

ASTM D4767-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-751
Client Reference:	Cherrystone Dam 2A	Depth (ft):	12-14
Project No.:	R-2023-070-001	Sample No.:	UD-02
Lab ID:	R-2023-070-001-005		

Visual Description:

Brown Sandy Silt (Undisturbed)

Stage No.	0	INITIAL SAM		IENSIONS (in)	
Test No.	3				
		Length 1:	6.264	Diameter 1:	2.861
PRESSURES (psi)		Length 2:	6.162	Diameter 2:	2.856
		Length 3:	6.232	Diameter 3:	2.875
Cell Pressure (psi)	87.0	Avg. Length:	6.219	Avg. Diam.:	2.864
Back Pressure (psi)	60.0				
Eff. Conf. Pressure (psi)	27.0	VOLUME CI	HANGE		
Pore Pressure		Initial Burette	e Reading	ı (ml)	48.0
Response (%)	99	Final Burette	Reading	(ml)	22.1
		Final Change	e (ml)		25.9
	NTC				

MAXIMUM OBLIQUITY POINTS

			Initial Dial Reading (mil)	115
Ρ	=	32.78	Dial Reading After Saturation (mil)	138
Q	=	19.66	Dial Reading After Consolidation (mil)	188

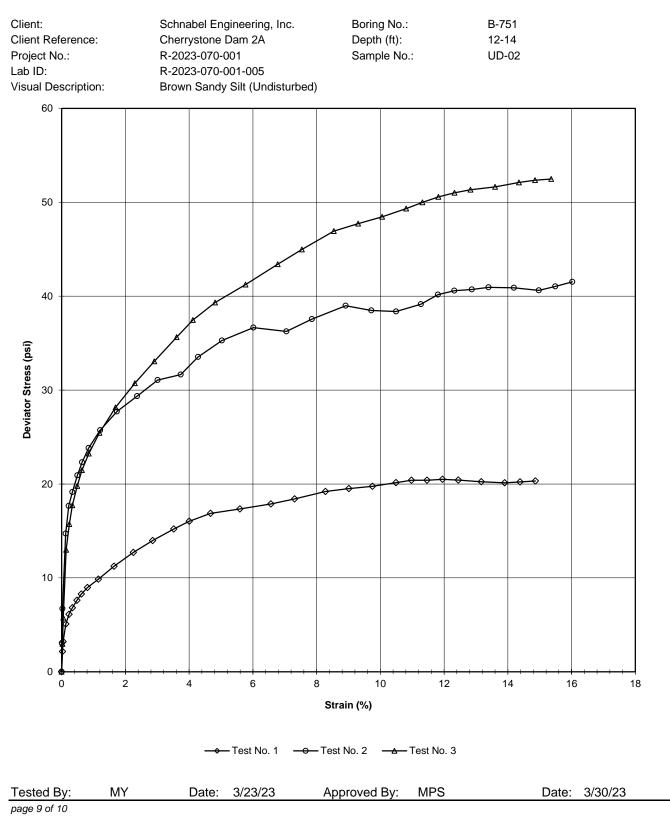
	LOAD		DE	FORMAT	ION	PORE PRESS	URE	-
	(LB)			(IN)		(PSI)		
	18.0			0.000		60.0		-
	36.3			0.002		60.7		
	53.7			0.003		61.6		
	98.5			0.009		64.9		
	115.6			0.015		67.1		
	128.1			0.021		68.8		
	141.1			0.030		70.6		
	151.8			0.039		71.8		
	163.0			0.052		73.0		
	177.4			0.073		74.2		
	195.3			0.104		74.9		
	212.6			0.141		75.2		
	228.8			0.179		75.1		
	246.8			0.222		74.7		
	259.8			0.253		74.4		
	273.7			0.296		73.9		
	288.9			0.355		73.1		
	306.2			0.417		72.4		
	319.1			0.463		71.8		
	335.6			0.525		71.1		
	343.7			0.572		70.6		
	351.4			0.618		70.2		
	360.4			0.664		69.8		
	367.0			0.696		69.5		
	373.0			0.727		69.3		
	378.1			0.758		69.0		
	382.5			0.788		68.8		
	387.9			0.836		68.5		
	394.6			0.882		68.2		
	398.6			0.913		68.0		
	401.8			0.944		67.9		
Tested By:	MY	Date:	3/23/23		Input Checked By:	GEM	Date:	3/30/23

page 7 of 10 DCN: CT-S28 DATE: 4/12/13 REVISION: 3

ASTM D4767-11

Client:	Schnabel Engineering, Inc.	Boring No.:	B-751
Client Reference:	Cherrystone Dam 2A	Depth (ft):	12-14
Project No.:	R-2023-070-001	Sample No.:	UD-02
Lab ID:	R-2023-070-001-005		

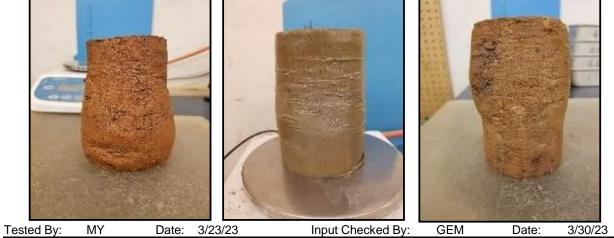
Visual Description: Brown Sandy Silt (Undisturbed)


Effective Confining Pressure (psi)	27.0		Stage No. Test No		0 3			
INITIAL DIMENSIONS			VOLUME CHANGE					
Initial Sample Length (in) Initial Sample Diameter (in) Initial Sample Area (in ²) Initial Sample Volume (in ³)	6.22 2.86 6.44 40.07		Volume After Consolidation (in ³) Length After Consolidation (in) Area After Consolidation (in ²)	After Consolidation (in) 6.15				
Strain Deviator ∆U (%) Stress PSI	$\overline{\sigma}_1$	$\overline{\sigma}_3$	Effective Principal A Stress Ratio	P	Q			

0.02	2.96	0.74	29.22	26.3	1.113	0.25	27.74	1.48
0.05	5.77	1.64	31.13	25.4	1.228	0.29	28.24	2.88
0.14	12.98	4.86	35.12	22.1	1.586	0.38	28.63	6.49
0.24	15.72	7.14	35.58	19.9	1.792	0.46	27.72	7.86
0.34	17.73	8.76	35.97	18.2	1.972	0.50	27.10	8.87
0.49	19.79	10.57	36.22	16.4	2.204	0.54	26.33	9.90
0.64	21.47	11.81	36.66	15.2	2.413	0.56	25.93	10.74
0.85	23.23	12.96	37.27	14.0	2.654	0.56	25.66	11.61
1.19	25.44	14.16	38.28	12.8	2.981	0.56	25.56	12.72
1.69	28.15	14.94	40.21	12.1	3.334	0.54	26.14	14.08
2.30	30.72	15.16	42.56	11.8	3.595	0.50	27.20	15.36
2.91	33.06	15.10	44.97	11.9	3.777	0.46	28.43	16.53
3.61	35.63	14.72	47.91	12.3	3.902	0.42	30.09	17.82
4.12	37.46	14.39	50.07	12.6	3.971	0.39	31.34	18.73
4.82	39.33	13.88	52.45	13.1	3.998	0.36	32.78	19.66
5.77	41.24	13.13	55.11	13.9	3.973	0.32	34.49	20.62
6.78	43.40	12.35	58.05	14.6	3.963	0.29	36.35	21.70
7.54	44.98	11.79	60.19	15.2	3.957	0.26	37.70	22.49
8.54	46.93	11.08	62.85	15.9	3.947	0.24	39.39	23.46
9.30	47.73	10.64	64.09	16.4	3.917	0.23	40.23	23.86
10.06	48.45	10.16	65.30	16.8	3.876	0.21	41.07	24.23
10.81	49.33	9.77	66.56	17.2	3.863	0.20	41.89	24.67
11.32	50.00	9.50	67.49	17.5	3.857	0.19	42.50	25.00
11.82	50.57	9.26	68.31	17.7	3.850	0.18	43.02	25.28
12.33	51.01	9.02	68.98	18.0	3.837	0.18	43.48	25.50
12.83	51.33	8.79	69.54	18.2	3.819	0.17	43.88	25.67
13.60	51.64	8.47	70.17	18.5	3.786	0.17	44.35	25.82
14.35	52.11	8.19	70.92	18.8	3.770	0.16	44.87	26.06
14.85	52.36	8.02	71.34	19.0	3.759	0.15	45.16	26.18
15.36	52.48	7.86	71.62	19.1	3.742	0.15	45.38	26.24

page 8 of 10

ASTM D4767-11

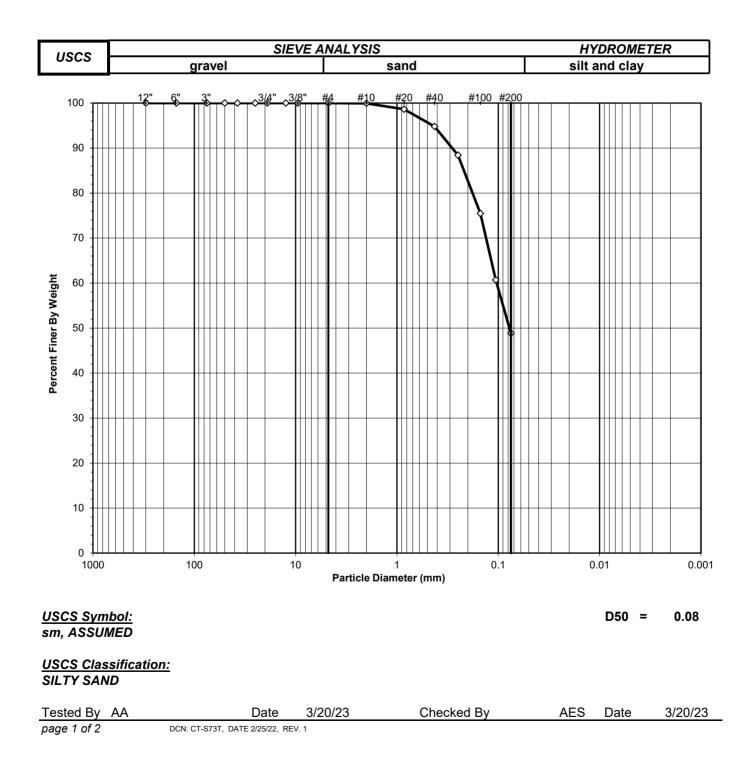


Client:	Schnabel Engineering, Inc.		
Client Reference:	Cherrystone Dam 2A		
Project No.:	R-2023-070-001		
Lab ID:	R-2023-070-001-005	Specific Gravity (Assumed)	2.7

Visual Description: Brown Sandy Silt (Undisturbed)

SAMPLE CONDITION SUMMARY

Boring No.:	B-751	B-751	B-751
Depth (ft):	12-14	12-14	12-14
Sample No.:	UD-02	UD-02	UD-02
Test No.	T1	T2	Т3
Deformation Rate (in/min)	0.002	0.002	0.002
Back Pressure (psi)	60.0	60.0	60.0
Consolidation Time (days)	1	1	1
Moisture Content (%) (INITIAL)	12.7	12.7	12.7
Total Unit Weight (pcf)	121.9	122.4	128.4
Dry Unit Weight (pcf)	108.2	108.6	113.9
Moisture Content (%) (FINAL)	29.0	28.8	19.3
Initial State Void Ratio,e	0.558	0.552	0.480
Void Ratio at Shear, e	0.481	0.465	0.405


page 10 of 10

DCN: CT-S28 DATE: 4/12/13 REVISION: 3

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-006 Boring No.: Depth (ft): Sample No.: Soil Color: B-51 4-6 S-03 Brown

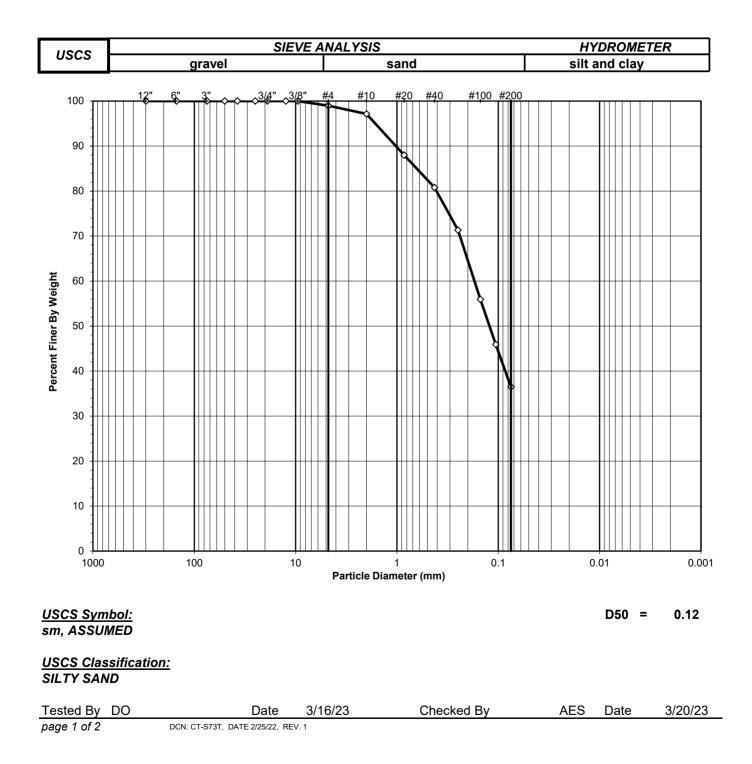
ASTM D6913-17

Client:Schnabel Engineering, Inc.BorirClient Reference:Cherrystone Dam 2ADeptProject No.:R-2023-070-001SamLab ID:R-2023-070-001-006Soil

Sample No.: S	-6 -03
•	rown

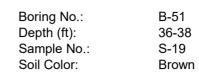
Moisture (Content of Passi	ng 3/4" Material	Mois	ture Content of Retained 3/4" N	Material
Tare No.:			709	Tare No.:	NA
Wt. of Tar	e & Wet Sample	e (g):	286.73	Weight of Tare & Wet Sample	(g): NA
	e & Dry Sample		253.26	Weight of Tare & Dry Sample (
Weight of	• •		90.58	Weight of Tare (g):	NA
•	Water (g):		33.47	Weight of Water (g):	NA
•	Dry Soil (g):		162.68	Weight of Dry Soil (g):	NA
Moisture	Content (%):		20.6	Moisture Content (%):	0.0
Dry Weigh	nt of Sample (g):		NA	Total Dry Weight of Sample (g)	: 162.68
	(Sub-Specimen)		709	Wet Weight of +3/4" Sample (g	a): 0.00
	e & Wet Sub-Sp		286.73	Dry Weight of + 3/4" Sample (g	
Weight of		(0)	90.58	Dry Weight of - 3/4" Sample (g	
-	imen Wet Weigh	nt (g):	196.15	Dry Weight -3/4" +3/8" Sample	,
	-3/8" Sub-Speci		NA	Dry Weight of -3/8" Sample (g)	(0)
	· ·	ub-Specimen (g):	NA	J - Factor (% Finer than 3/4"):	NA
Weight of			NA	J - Factor (% Finer than 3/8"):	NA
	imen -3/8" Wet \	Neight (g):	NA		
Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent Accumulated
Size	Opening	Retained	Retained	Percent	Finer Percent
				Retained	Finer
1			((0)

Size	Opening	Retaineu		Retained	Feiceni	Filler	Fercent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	0.00	**)	0.00	0.00	100.00	100.0
3/8"	9.5	0.00)	0.00	0.00	100.00	100.0
#4	4.75	0.00		0.00	0.00	100.00	100.0
#10	2	0.08		0.05	0.05	99.95	100.0
#20	0.85	2.15 (**)	1.32	1.37	98.63	98.6
#40	0.425	6.24		3.84	5.21	94.79	94.8
#60	0.25	10.38		6.38	11.59	88.41	88.4
#100	0.15	21.06		12.95	24.53	75.47	75.5
#140	0.106	24.05		14.78	39.32	60.68	60.7
#200	0.075	19.28		11.85	51.17	48.83	48.8
Pan	-	79.44		48.83	100.00	-	-


Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	AA	Date	3/20/23	Checked By	AES	Date	3/20/23
page 2 of 2		DCN: CT-S73T, DATE 2/25/22, RE	V. 1				

ASTM D6913 / D7928

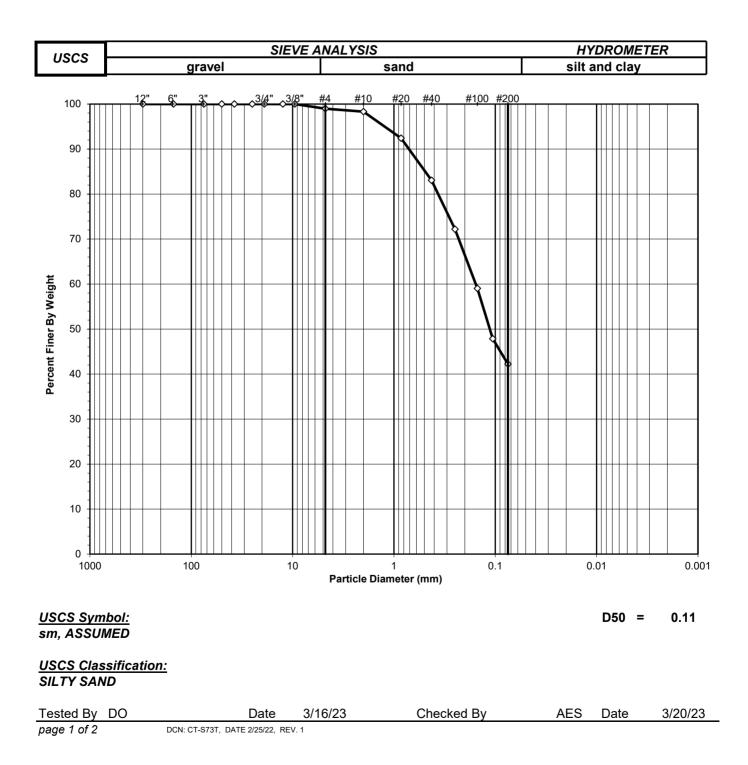

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-007 Boring No.: Depth (ft): Sample No.: Soil Color: B-51 36-38 S-19 Brown

ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-007

Moisture Content of Passing 3/4" Material	Μ	oisture Content of Retained 3/4" Materia	al
Tare No.:	443	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	349.13	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	319.78	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	99.22	Weight of Tare (g):	NA
Weight of Water (g):	29.35	Weight of Water (g):	NA
Weight of Dry Soil (g):	220.56	Weight of Dry Soil (g):	NA
Moisture Content (%):	13.3	Moisture Content (%):	0.0
Dry Weight of Sample (g):	NA	Total Dry Weight of Sample (g):	220.56
Tare No. (Sub-Specimen)	443	Wet Weight of +3/4" Sample (g):	0.00
Wt. of Tare & Wet Sub-Specimen (g):	349.13	Dry Weight of + 3/4" Sample (g):	0.00
Weight of Tare (g):	99.22	Dry Weight of - 3/4" Sample (g):	220.56
Sub-Specimen Wet Weight (g):	249.91	Dry Weight -3/4" +3/8" Sample (g):	0.00
Tare No. (-3/8" Sub-Specimen):	NA	Dry Weight of -3/8" Sample (g):	220.56
Wt. of Tare & Wet -3/8" Sub-Specimen (g):	NA	J - Factor (% Finer than 3/4"):	NA
Weight of Tare (g):	NA	J - Factor (% Finer than 3/8"):	NA
Sub-Specimen -3/8" Wet Weight (g):	NA		
Sieve Sieve Weight of Soil	Perce	nt Accumulated Perce	ent Accumulated

Sieve	Sieve	weight of Soli		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100
6"	150	0.00		0.00	0.00	100.00	100
3"	75	0.00		0.00	0.00	100.00	100
2"	50	0.00	(*)	0.00	0.00	100.00	100
1 1/2"	37.5	0.00		0.00	0.00	100.00	100
1"	25	0.00		0.00	0.00	100.00	100
3/4"	19	0.00		0.00	0.00	100.00	100
1/2"	12.5	0.00	(**)	0.00	0.00	100.00	100
3/8"	9.5	0.00	()	0.00	0.00	100.00	100
#4	4.75	2.30		1.04	1.04	98.96	99
#10	2	3.99		1.81	2.85	97.15	97
#20	0.85	20.18	(**)	9.15	12.00	88.00	88
#40	0.425	15.89		7.20	19.21	80.79	81
#60	0.25	20.91		9.48	28.69	71.31	71
#100	0.15	33.94		15.39	44.07	55.93	56
#140	0.106	22.09		10.02	54.09	45.91	46
#200	0.075	20.82		9.44	63.53	36.47	36
Pan	-	80.44		36.47	100.00	-	-


Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	DO	Date	3/16/23	Checked By	AES	Date	3/20/23
page 2 of 2		DCN: CT-S73T, DATE 2/25/22, REV	. 1				

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-008 Boring No.: Depth (ft): Sample No.: Soil Color: B-51 46-48 S-24 Brown

59

48

42

-

59.03

47.86

42.22

-

ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-008

#100

#140

#200

Pan

0.15

0.106

0.075

-

Boring No.:B-51Depth (ft):46-48Sample No.:S-24Soil Color:Brown

Moisture Content of Passing 3/4" Material				Mois	ture Content of Retained	3/4" Material	
Tare No.:			2	432	Tare No.:		NA
	e & Wet Sample	; (a).		1.81	Weight of Tare & Wet S	ample (g).	NA
	e & Dry Sample			63.51	Weight of Tare & Dry Sa		NA
Weight of		(9).		9.30	Weight of Tare (g):	(9).	NA
Weight of				8.30	Weight of Water (g):		NA
	Dry Soil (g):			64.21	Weight of Dry Soil (g):		NA
Moisture (Content (%):		1	8.3	Moisture Content (%):		0.0
Dry Weigh	t of Sample (g):			NA	Total Dry Weight of San	nple (g):	264.21
Tare No. (Sub-Specimen)			432	Wet Weight of +3/4" Sa	mple (g):	0.00
Wt. of Tare	e & Wet Sub-Sp	ecimen (g):	41	1.81	Dry Weight of + 3/4" Sa	mple (g):	0.00
Weight of [·]	Tare (g):		9	9.30	Dry Weight of - 3/4" Sar	nple (g):	264.21
Sub-Speci	men Wet Weigh	nt (g):	31	2.51	Dry Weight -3/4" +3/8" S	Sample (g):	0.00
Tare No. (-	-3/8" Sub-Speci	men):		NA	Dry Weight of -3/8" Sample (g):		264.21
		ub-Specimen (g):	NA		J - Factor (% Finer than 3/4"):		NA
Weight of '				NA	J - Factor (% Finer than	3/8"):	NA
Sub-Speci	men -3/8" Wet \	Veight (g):		NA			
Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100
6"	150	0.00		0.00	0.00	100.00	100
3"	75	0.00		0.00	0.00	100.00	100
2"	50	0.00	(*)	0.00	0.00	100.00	100
1 1/2"	37.5	0.00		0.00	0.00	100.00	100
1"	25	0.00		0.00	0.00	100.00	100
3/4"	19	0.00		0.00	0.00	100.00	100
1/2"	12.5	0.00	(**)	0.00	0.00	100.00	100
3/8"	9.5	0.00	()	0.00	0.00	100.00	100
#4	4.75	2.71		1.03	1.03	98.97	99
#10	2	1.71		0.65	1.67	98.33	98
#20	0.85	15.63	(**)	5.92	7.59	92.41	92
#20 #40 #60	0.425 0.25	24.75 28.71		9.37 10.87	16.96 27.82	83.04 72.18	83 72

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

34.73

29.52

14.90

111.55

Tested By	DO	Date	3/16/23	Checked By	AES	Date	3/20/23
page 2 of 2		DCN: CT-S73T, DATE 2/25/22, RE	V. 1				

13.14

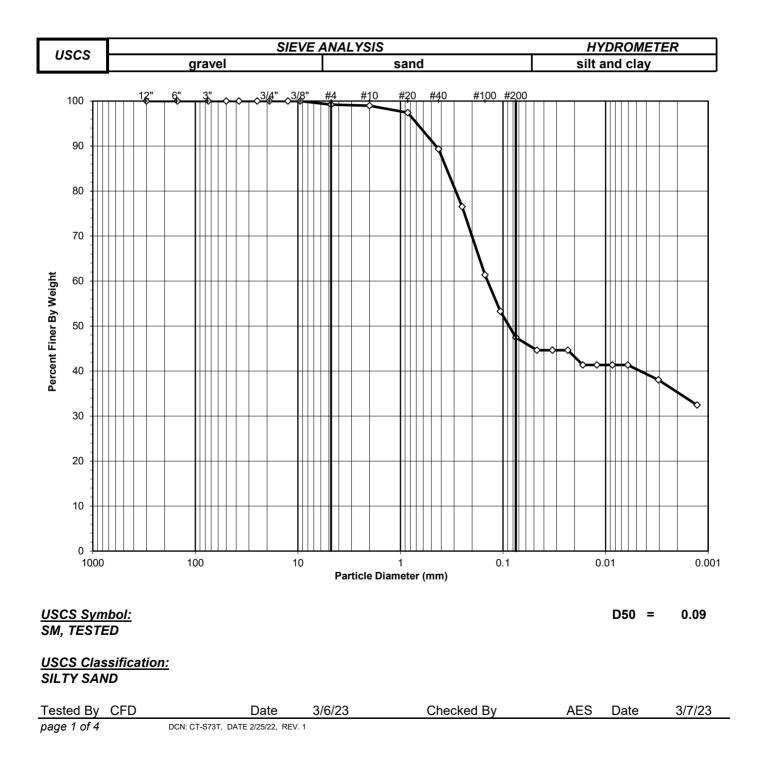
11.17

5.64

42.22

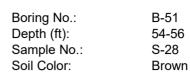
40.97

52.14


57.78

100.00

ASTM D6913 / D7928


Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 1A R-2023-070-001 R-2023-070-001-012 Boring No.: Depth (ft): Sample No.: Soil Color: B-51 54-56 S-28 Brown

ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 1AProject No.:R-2023-070-001Lab ID:R-2023-070-001-012

Moisture Content of Passing 3/4" Material Moisture Content of Retained 3/4" Material						
Tare No.:	466	Tare No.:	ΝΑ			
			NA			
Wt. of Tare & Wet Sample (g):	210.92	Weight of Tare & Wet Sample (g	,			
Wt. of Tare & Dry Sample (g):	196.80	Weight of Tare & Dry Sample (g)	: NA			
Weight of Tare (g):	143.87	Weight of Tare (g):	NA			
Weight of Water (g):	14.12	Weight of Water (g):	NA			
Weight of Dry Soil (g):	52.93	Weight of Dry Soil (g):	NA			
Moisture Content (%):	26.7	Moisture Content (%):	0.0			
Dry Weight of Sample (g):	NA	Total Dry Weight of Sample (g):	52.93			
Tare No. (Sub-Specimen)	466	Wet Weight of +3/4" Sample (g):	0.00			
Wt. of Tare & Wet Sub-Specimen (g):	210.92	Dry Weight of + 3/4" Sample (g):	0.00			
Weight of Tare (g):	143.87	Dry Weight of - 3/4" Sample (g):	52.93			
Sub-Specimen Wet Weight (g):	67.05	Dry Weight -3/4" +3/8" Sample (g	g): 0.00			
Tare No. (-3/8" Sub-Specimen):	NA	Dry Weight of -3/8" Sample (g):	52.93			
Wt. of Tare & Wet -3/8" Sub-Specimen (g):	NA	J - Factor (% Finer than 3/4"):	NA			
Weight of Tare (g):	NA	J - Factor (% Finer than 3/8"):	NA			
Sub-Specimen -3/8" Wet Weight (g):	NA					
Sieve Sieve Weight of Soil	Percent	Accumulated F	Percent Accumulated			

Sleve	Sleve	weight of Soli		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	0.00	(**)	0.00	0.00	100.00	100.0
3/8"	9.5	0.00	()	0.00	0.00	100.00	100.0
#4	4.75	0.41		0.77	0.77	99.23	99.2
#10	2	0.14		0.26	1.04	98.96	99.0
#20	0.85	0.81	(**)	1.53	2.57	97.43	97.4
#40	0.425	4.28		8.09	10.66	89.34	89.3
#60	0.25	6.79		12.83	23.48	76.52	76.5
#100	0.15	8.02		15.15	38.64	61.36	61.4
#140	0.106	4.28		8.09	46.72	53.28	53.3
#200	0.075	3.07		5.80	52.52	47.48	47.5
Pan	-	25.13		47.48	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	CFD	Date	3/6/23	Checked By	AES	Date	3/7/23
page 3 of 4		DCN: CT-S73T, DATE 2/25/22, REV.	1				

HYDROMETER ANALYSIS

ASTM D7928-21

Client: Client Reference:	Schnabel Engineering, Inc. Cherrystone Dam 1A	Boring No.: Depth (ft):	B-51 54-56
Project No.:	R-2023-070-001	Sample No.:	S-28
Lab ID:	R-2023-070-001-012	Soil Color:	Brown

Elapsed Fime (min)	Reading rm	Temp. (C [°])	Offset rd,m	Effective Depth, Hm (cm)	D (mm)	Mass Percent (%) Finer, Nm	Mass Percent (%) Finer, Nm
0	NA	NA	NA	NA	NA	NA	NA
1	16.0	23.3	2.45	13.8	0.0467	94.0	44.6
2	16.0	23.3	2.45	13.8	0.0330	94.0	44.6
4	16.0	23.3	2.45	13.8	0.0234	94.0	44.6
8	15.0	23.3	2.45	13.9	0.0166	87.1	41.3
15	15.0	23.3	2.45	13.9	0.0121	87.1	41.3
30	15.0	23.3	2.45	13.9	0.0086	87.1	41.3
60	15.0	23.3	2.45	13.9	0.0061	87.1	41.3
240	14.0	23.3	2.45	14.1	0.0031	80.1	38.0
1440	13.0	21.4	3.15	14.3	0.0013	68.4	32.5

Tare No.:	8	Percent Finer than # 200:	47.48
Wt. of Tare & Dry Material (g):	351.24		
Weight of Tare (g):	332.36	Specific Gravity:	2.83 Measured
Weight of Deflocculant (g):	5.0		
Weight of Dry Material (g):	13.88		

Notes: Hydrometer test is performed on - # 200 sieve material.

Hydrometer - 152H	R- 481
Cylinder	R- 692
Thermometer	R- 350
Balance	R- 279
#200 Sieve	R- 632
Foam Inhibitor Used	No

Tested By	RFF	Date	3/6/23	Checked By	AES	Date	3/7/23
page 4 of 4							

ATTERBERG LIMITS

ASTM D 4318-17

Client: Client Reference: Project No.: Lab ID: Note: The USCS syn sieve material. See th	ILT eve material, We description .	et Prep.)						
	/ed Moisture]		id Limit T		
		Conten	IL					
	STM D2216-19		_	1	2	3	M	
Tare Number:		46	6	U	1M	A-H	U	
Wt. of Tare & Wet S	ample (g):	210.	92	22.96	27.42	24.15	L	
Wt. of Tare & Dry Sa	ample (g):	196.	.80	20.93	24.02	21.39	Т	
Weight of Tare (g):		143.	87	15.10	15.78	15.48	I	
Weight of Water (g):		14.	1	2.0	3.4	2.8	Р	
Weight of Dry Samp		52.		5.8	8.2	5.9	Ō	
Was As Received M		Ye		0.0	0.2	0.0	I I	
Moisture Content (%		26.		34.8	41.3	46.7	N	
Number of Blows:	/0).	20.	.7				T	
Number of Blows:				35	25	16		
Plastic Limit Tes	st	1	2	Range		Test Res	ults	
Tare Number:		3	J			Liquid Lim	nit (%):	40
Wt. of Tare & Wet S		21.61	21.61					
Wt. of Tare & Dry Sa	ample (g):	20.15	20.09			Plastic Lin	nit (%):	30
Weight of Tare (g):		15.36	15.06					
Weight of Water (g):		1.5	1.5			Plasticity	ndex (%):	10
Weight of Dry Sampl	le (g):	4.8	5.0			_		
	(0)					USCS Sym	nbol:	ML
Moisture Content (%	%):	30.5	30.2	0.3		,		
Note: The acceptable	•				0.84			
	Flow Curve		e oomen			lasticity Ch	art	
50					-	luction, on		
50				60			/	
				-				
45				50			· /	
					CL		сн	
		\mathbf{A}		_	CL			
% ⁴⁰		$\mathbf{\nabla}$		⊗ 40				
eut				ex -				
35 A deternation of the second				20				
Ŭ				ĭ₹				
ate				itic			MH	
≥ 30				20 L	/			
				-				
25					i la			
23				10				
					ML			
20								
20	10	<u> </u>	100	0		40 60	80	100
20 1	10 Number of Blov	ws	100	0		40 60 Juid Limit (%)	80	100
20 1		ws	100	/			80	100
20 1		 ws	100	0			80	100
Tested By CFD	Number of Blo	 NS 3/10/23		0			⁸⁰ 3/13/23	100

page 1 of 1 DCN: CTS4B, DATE: 5/22/18 REVISION: 8

SPECIFIC GRAVITY

AASHTO T-100-15

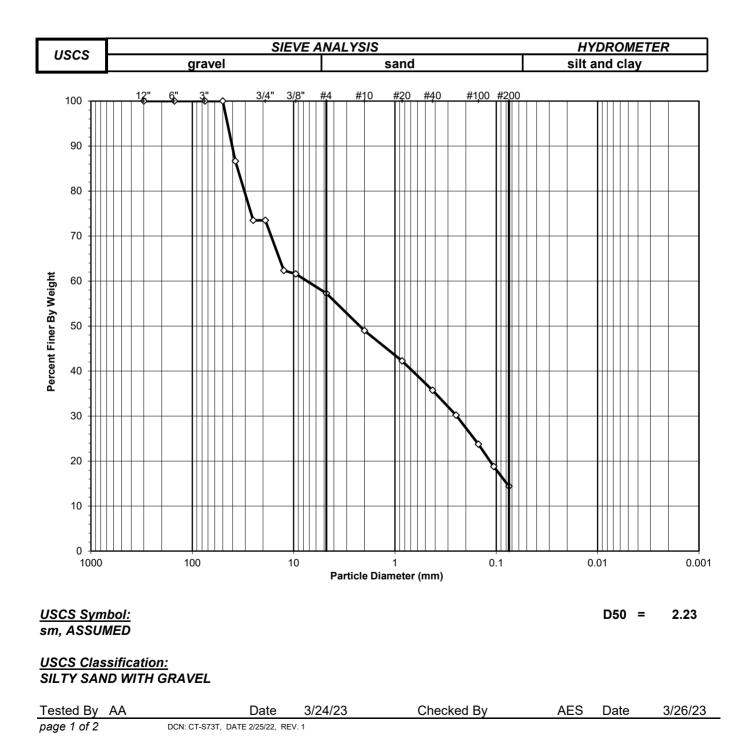
Client:	Schnabel Engineering, Inc.	Boring No.: B-51
Client Reference:	Cherrystone Dam 2A	Depth (ft): 54-56
Project No.:	R-2023-070-001	Sample No.: S-28
Lab ID:	R-2023-070-001-012	Visual Description: Brown Clay

(MInus No.4 sieve material, oven dried)

Replicate Number	1	2
Pycnometer ID:	R 543	R 544
Weight of Pycnometer & Soil & Water (g):	680.98	683.64
Temperature (°C):	22.6	22.7
Weight of Pycnometer & Water (g):	661.34	663.80
Tare Number:	543	544
Weight of Tare & Dry Soil (g):	193.73	196.39
Weight of Tare (g):	163.2	165.87
Weight of Dry Soil (g):	30.53	30.52
Specific Gravity of Soil @ Measured Temperature:	2.804	2.858
Specific Gravity of Water @ Measured Temperature:	0.99764	0.99761
Conversion Factor for Measured Temperature:	0.99943	0.99941
Specific Gravity @ 20° Celsius:	2.805	2.860

Average Specific Gravity @ 20° Celsius

2.83


Tested by RFF Date 3/0/23 Checked by AES Date 3/1/23	Tested By	RFF	Date	3/6/23	Checked By	AES	Date 3/7/23
--	-----------	-----	------	--------	------------	-----	-------------

page 1 of 1 DCN: CT-S5 DATE: 3/26/18 REVISION: 21

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-013 Boring No.: Depth (ft): Sample No.: Soil Color: B-51 66-68 S-34 Brown

61.59

62

ASTM D6913-17

Client: Schnabel Engineering, Inc. Client Reference: Cherrystone Dam 2A Project No.: R-2023-070-001 Lab ID: R-2023-070-001-013

3/8"

9.5

B-51 Boring No.: Depth (ft): 66-68 Sample No.: S-34 Soil Color: Brown

Moisture C	ontent of Pass	ing 3/4" Material		Mois	ture Content of Retained	3/4" Material	
				477	T N		
Tare No.:	0.144 / 0			477	Tare No.:		NA
	e & Wet Sampl			33.70	Weight of Tare & Wet Sar		NA
	e & Dry Sample	e (g):		11.93	Weight of Tare & Dry San	ipie (g):	NA
Weight of				9.56	Weight of Tare (g):		NA
Weight of				1.77	Weight of Water (g):		NA
weight of	Dry Soil (g):		3	12.37	Weight of Dry Soil (g):		NA
Moisture (Content (%):			7.0	Moisture Content (%):		0.0
Dry Weigh	t of Sample (g)):		NA	Total Dry Weight of Samp	le (g):	312.37
Tare No. (Sub-Specimen)		477	Wet Weight of +3/4" Sam	ple (g):	88.61
Wt. of Tare & Wet Sub-Specimen (g):		43	33.70	Dry Weight of + 3/4" Sam	ple (g):	82.84	
Weight of Tare (g):		99.56		Dry Weight of - 3/4" Samp	229.53		
Sub-Specimen Wet Weight (g):		33	34.14	Dry Weight -3/4" +3/8" Sa	mple (g):	37.13	
Tare No. (-3/8" Sub-Specimen):		NA		Dry Weight of -3/8" Samp	192.40		
		Sub-Specimen (g):	NA		J - Factor (% Finer than 3	NA	
Weight of [·]				NA	J - Factor (% Finer than 3	/8")́:	NA
Sub-Speci	men -3/8" Wet	Weight (g):		NA			
Sieve	Sieve	Weight of Soil		Percent	Accumulated		Accumulated
Size	Opening	Retained		Retained		Finer	Percent
	(199.199.)	((0/)	Retained	(0/)	Finer
12"	(mm)	<u>(g)</u> 0.00		<u>(%)</u> 0.00	<u>(%)</u> 0.00	<u>(%)</u> 100.00	<u>(%)</u> 100
6"	300	0.00		0.00		100.00	100
6 3"	150 75	0.00		0.00	0.00 0.00	100.00	100
3 2"	75 50	0.00	(*)	0.00	0.00	100.00	100
2 1 1/2"	30 37.5	41.70	(*)	13.35	13.35	86.65	87
1"	25	41.70		13.35	26.52	73.48	73
3/4"	25 19	0.00		0.00	26.52	73.48	73 73
1/2"	12.5	34.78		11.13	37.65	62.35	62
1/2	12.0	54.70	(**)	11.15	57.05	02.00	02

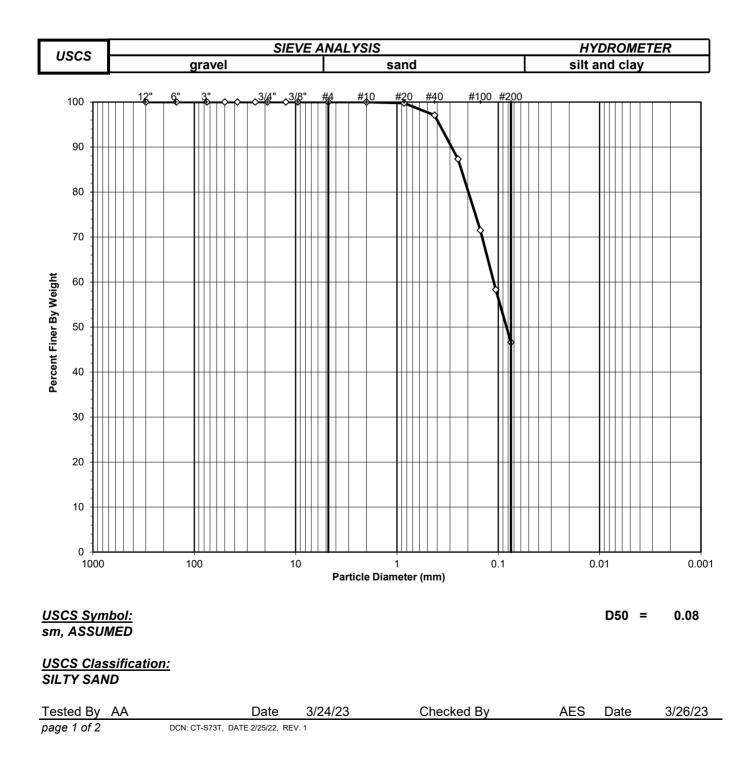
#4 4.75 13.55 4.34 42.74 57.26 57 #10 2 25.89 8.29 51.03 48.97 49 #20 0.85 21.00 (**) 6.72 57.76 42.24 42 #40 36 0.425 20.35 6.51 64.27 35.73 0.25 17.22 5.51 69.78 30.22 30 #60 #100 0.15 20.19 6.46 76.25 23.75 24 #140 0.106 15.52 4.97 18.79 19 81.21 #200 0.075 13.72 4.39 85.61 14.39 14 44.96 14.39 Pan 100.00 ---

0.75

38.41

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

(**)


2.35

Tested By	AA	Date	3/24/23	Checked By	AES	Date	3/26/23
page 2 of 2		DCN: CT-S73T, DATE 2/25/22, RE	V. 1				

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-014 Boring No.: Depth (ft): Sample No.: Soil Color: B-651 6-8 S-04 Brown

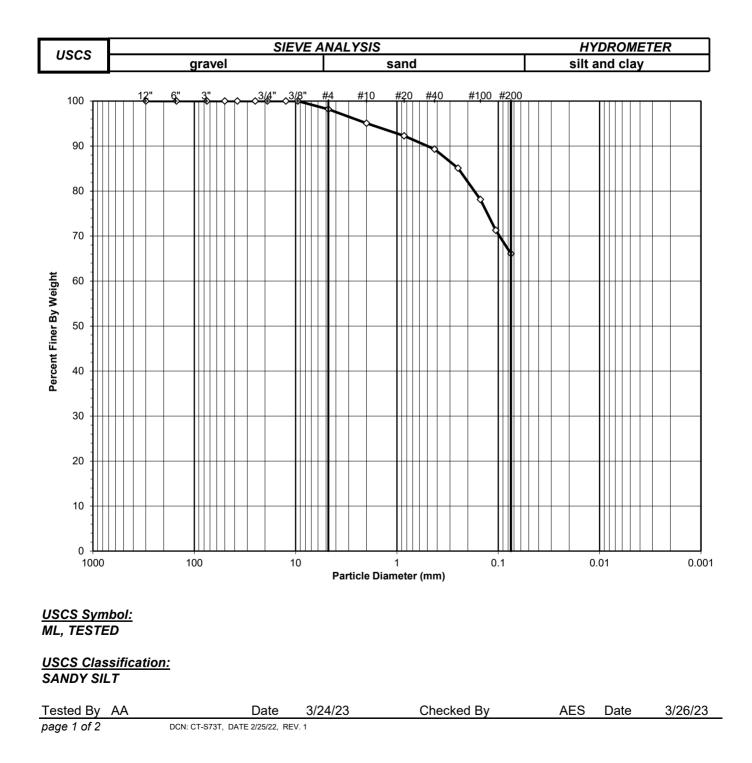
ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-014

Boring No.:	B-651
Depth (ft):	6-8
Sample No.:	S-04
Soil Color:	Brown

Moisture Conte	ent of Passing 3/	4" Material	Moisture Content of Retained 3/4" Material				
Tare No.:			723	Tare No.:		NA	
	Mot Somple (a):		270.50		a).	NA	
	Wet Sample (g):			Weight of Tare & Wet Sample (•		
	Dry Sample (g):		238.12	Weight of Tare & Dry Sample (g	g):	NA	
Weight of Tare			90.10	Weight of Tare (g):	NA		
Weight of Wat	er (g):		32.38	Weight of Water (g):	NA		
Weight of Dry	Soil (g):		148.02	Weight of Dry Soil (g):		NA	
Moisture Con	tent (%):		21.9	Moisture Content (%):	0.0		
Dry Weight of Sample (g):			NA	Total Dry Weight of Sample (g):	148.02		
Tare No. (Sub-Specimen)			723	Wet Weight of +3/4" Sample (g):			
Wt. of Tare & V	Wet Sub-Specime	n (g):	270.50	Dry Weight of + 3/4" Sample (g):			
Weight of Tare (g):			90.10	Dry Weight of - 3/4" Sample (g): 1			
Sub-Specimen Wet Weight (g):			180.40	Dry Weight -3/4" +3/8" Sample (g):			
Tare No. (-3/8" Sub-Specimen):			NA	Dry Weight of -3/8" Sample (g): 14			
Wt. of Tare & Wet -3/8" Sub-Specimen (g):			NA	J - Factor (% Finer than 3/4"):			
Weight of Tare (g):			NA	J - Factor (% Finer than 3/8"):			
Sub-Specimen -3/8" Wet Weight (g):			NA				
Sieve S	Sieve \	Neight of Soil	Percent	Accumulated	Percent	Accumulated	
Size O	pening	Retained	Retained	Percent	Finer	Percent	
	-			Retained		Finer	

Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	0.00	(**)	0.00	0.00	100.00	100.0
3/8"	9.5	0.00	()	0.00	0.00	100.00	100.0
#4	4.75	0.00		0.00	0.00	100.00	100.0
#10	2	0.00		0.00	0.00	100.00	100.0
#20	0.85	0.35	(**)	0.24	0.24	99.76	99.8
#40	0.425	4.01		2.71	2.95	97.05	97.1
#60	0.25	14.39		9.72	12.67	87.33	87.3
#100	0.15	23.44		15.84	28.50	71.50	71.5
#140	0.106	19.51		13.18	41.68	58.32	58.3
#200	0.075	17.35		11.72	53.40	46.60	46.6
Pan	-	68.97		46.60	100.00	-	-


Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	AA	Date	3/24/23	Checked By	AES	Date	3/26/23
page 2 of 2		DCN: CT-S73T, DATE 2/25/22, RE	V. 1				

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-015 Boring No.: Depth (ft): Sample No.: Soil Color: B-651 22-24 S-12 Brown

ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-015

Boring No.:	B-651
Depth (ft):	22-24
Sample No.:	S-12
Soil Color:	Brown

Moisture Content of Passing 3/4" Material Moisture Content of Retained 3/4" Material						
Tare No.:			745	Tare No.:		NA
Wt. of Tar	e & Wet Sampl	e (q):	300.91	Weight of Tare & Wet Sample (a):	NA
	e & Dry Sample		263.14	Weight of Tare & Dry Sample (c	• /	NA
Weight of	• •	(6)	141.96	Weight of Tare (g):	,	NA
•	Water (g):		37.77	Weight of Water (g):		NA
•	Dry Soil (g):		121.18	Weight of Dry Soil (g):		NA
Moisture	Content (%):		31.2	Moisture Content (%):		0.0
Dry Weigh	nt of Sample (g)	:	NA	Total Dry Weight of Sample (g):		121.18
Tare No. (Sub-Specimen)		745	Wet Weight of +3/4" Sample (g)):	0.00
Wt. of Tar	e & Wet Sub-S	pecimen (g):	300.91	Dry Weight of + 3/4" Sample (g)):	0.00
Weight of	Tare (g):		141.96	Dry Weight of - 3/4" Sample (g):		121.18
Sub-Spec	imen Wet Weig	ht (g):	158.95	Dry Weight -3/4" +3/8" Sample	(g):	0.00
Tare No. (-3/8" Sub-Spec	imen):	NA	Dry Weight of -3/8" Sample (g):		121.18
		Sub-Specimen (g):	NA	J - Factor (% Finer than 3/4"):		NA
Weight of		1 (0)	NA	J - Factor (% Finer than 3/8"):		NA
Sub-Spec	imen -3/8" Wet	Weight (g):	NA			
Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer

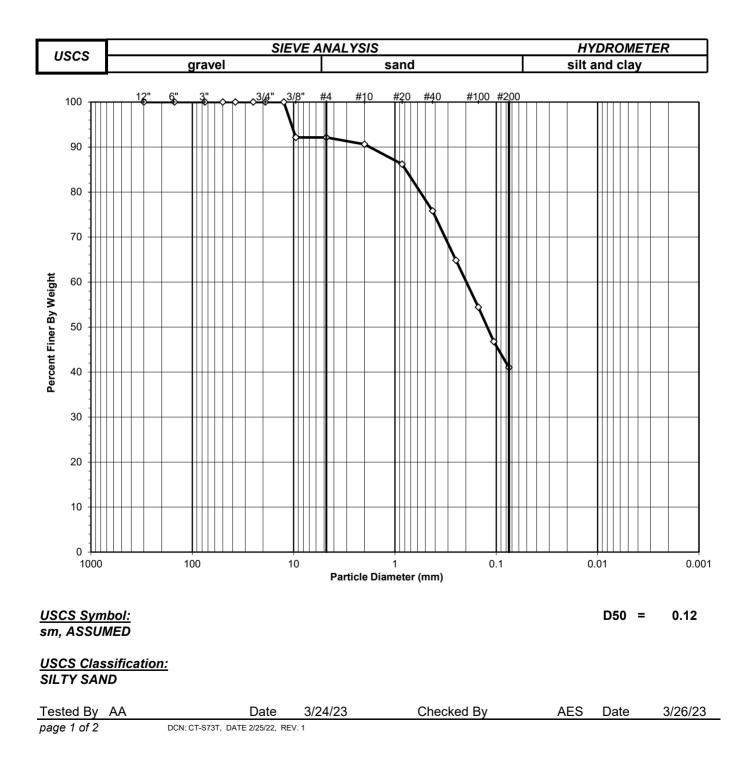
Size	Opening	Retained	Retained	a Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100
6"	150	0.00	0.00	0.00	100.00	100
3"	75	0.00	0.00	0.00	100.00	100
2"	50	0.00 (*) 0.00	0.00	100.00	100
1 1/2"	37.5	0.00	0.00	0.00	100.00	100
1"	25	0.00	0.00	0.00	100.00	100
3/4"	19	0.00	0.00	0.00	100.00	100
1/2"	12.5	0.00	**) 0.00	0.00	100.00	100
3/8"	9.5	0.00) 0.00	0.00	100.00	100
#4	4.75	2.23	1.84	1.84	98.16	98
#10	2	3.75	3.09	4.93	95.07	95
#20	0.85	3.40 ('	**) 2.81	7.74	92.26	92
#40	0.425	3.59	2.96	10.70	89.30	89
#60	0.25	5.11	4.22	14.92	85.08	85
#100	0.15	8.42	6.95	21.87	78.13	78
#140	0.106	8.29	6.84	28.71	71.29	71
#200	0.075	6.33	5.22	33.93	66.07	66
Pan	-	80.06	66.07	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	AA	Date	3/24/23	Checked By	AES	Date	3/26/23
page 2 of 2		DCN: CT-S73T, DATE 2/25/22, RE	V. 1				

ATTERBERG LIMITS

ASTM D 4318-17


As Tare Number: Wt. of Tare & Wet S	ne "Sieve and Hy ved Moisture STM D2216-19 Gample (g):	Dam 1A 101 101-015 10is test refe drometer A Conten 74! 300.	ers only to Analysis" <u>(</u> I t 5 91	Soil o the minus N graph page fo 1 X-9 24.34	to. 40 br the completion Liqu 2 A-D 23.58	22-24 : S-12 : BROWN S (Minus #40 sid (Minus #40 si	eve material, We description .	et Prep.)
Wt. of Tare & Dry Sa	ample (g):	263.		21.88	21.05	21.76	т	
Weight of Tare (g):		141.		15.59	15.29	15.13	I	
Weight of Water (g):		37.		2.5	2.5	3.2	P	
Weight of Dry Samp Was As Received M		121 Ye :		6.3	5.8	6.6	0	
Moisture Content (31.		39.1	43.9	48.4	N N	
Number of Blows:	70).	31.	2	39.1	43.9 25	40.4 16	T	
Number of Blows.					20	10	•	
Plastic Limit Tes	st	1	2	Range		Test Res	ults	
Tare Number: Wt. of Tare & Wet S		V 21.44	V-2 21.84			Liquid Lim		43
Wt. of Tare & Dry Sa	ample (g):	20.01	20.43			Plastic Lin	nit (%):	29
Weight of Tare (g):		15.19	15.57			Disstistic	(0/)	
Weight of Water (g):		1.4	1.4			Plasticity I	ndex (%):	14
Weight of Dry Samp Moisture Content (⁴ <i>Note: The acceptabl</i>	%):	4.8 29.7 vo Moistur	4.9 29.0 re Conten	0.7 ts is +	0.84	USCS Sym	nbol:	ML
	Flow Curve	re molecul	0 0011011			lasticity Cha	art	
50				60	-			
45		8		50	CL		сн	2
(%) 40 tuent 40 35				(%) 40				_
35 Content 35 30 30				00 Diagnatic line of the second secon			МН	
25				10				
20					ML			
1	10 Number of Blov	vs	100	CL- ML	20	40 60 quid Limit (%)	80	100
Tested By DO	Date	3/13/23	Cheo	cked By	AES	Date	3/14/23	
page 1 of 1 DCN: CTS4B.	DATE: 5/22/18 REVISION:	8						

page 1 of 1 DCN: CTS4B, DATE: 5/22/18 REVISION: 8

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-016 Boring No.: Depth (ft): Sample No.: Soil Color: B-651 36-38 S-19 Brown

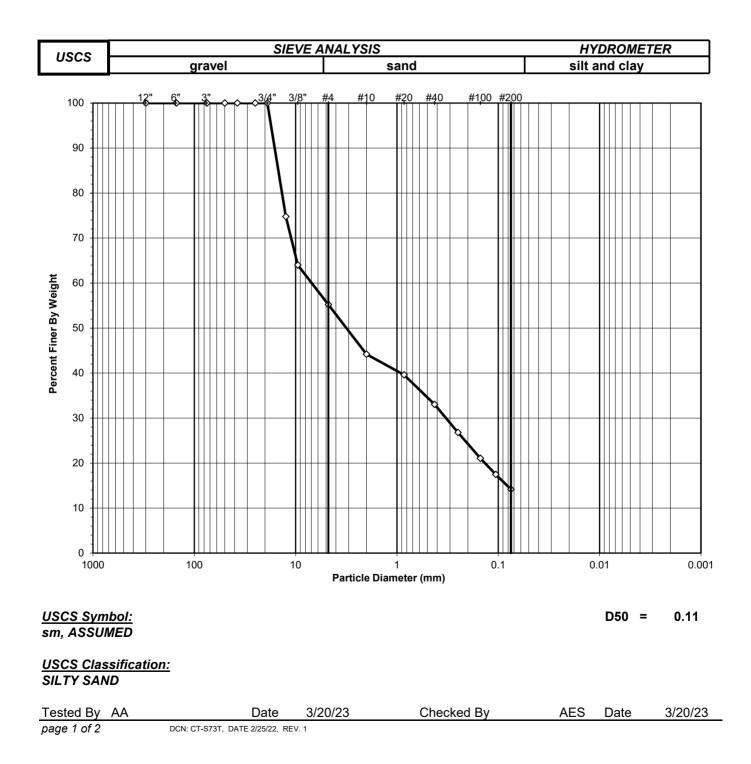
ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-016

Boring No.:	B-651
Depth (ft):	36-38
Sample No.:	S-19
Soil Color:	Brown

Moisture Content of Passing 3/4" Material Moisture Content of Retained 3/4" Material					
Tare No.:	426	Tare No.:	NA		
Wt. of Tare & Wet Sample (g):	239.26	Weight of Tare & Wet Sample (g):	NA		
Wt. of Tare & Dry Sample (g):	186.21	Weight of Tare & Dry Sample (g):	NA		
Weight of Tare (g):	99.32	Weight of Tare (g):	NA		
Weight of Water (g):	53.05	Weight of Water (g):	NA		
Weight of Dry Soil (g):	86.89	Weight of Dry Soil (g):	NA		
Moisture Content (%):	61.1	Moisture Content (%):	0.0		
Dry Weight of Sample (g):	NA	Total Dry Weight of Sample (g):	86.89		
Tare No. (Sub-Specimen)	426	Wet Weight of +3/4" Sample (g):	0.00		
Wt. of Tare & Wet Sub-Specimen (g):	239.26	Dry Weight of + 3/4" Sample (g):	0.00		
Weight of Tare (g):	99.32	Dry Weight of - 3/4" Sample (g):	86.89		
Sub-Specimen Wet Weight (g):	139.94	Dry Weight -3/4" +3/8" Sample (g):	6.82		
Tare No. (-3/8" Sub-Specimen):	NA	Dry Weight of -3/8" Sample (g):	80.07		
Wt. of Tare & Wet -3/8" Sub-Specimen (g):	NA	J - Factor (% Finer than 3/4"):	NA		
Weight of Tare (g):	NA	J - Factor (% Finer than 3/8"):	NA		
Sub-Specimen -3/8" Wet Weight (g):	NA				
Sieve Sieve Weight of Soil	Perce	nt Accumulated Percen	t Accumulated		

Oleve	Oleve	Weight Of Soli		reicent	Accumulated	i crocitte	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100
6"	150	0.00		0.00	0.00	100.00	100
3"	75	0.00		0.00	0.00	100.00	100
2"	50	0.00	(*)	0.00	0.00	100.00	100
1 1/2"	37.5	0.00		0.00	0.00	100.00	100
1"	25	0.00		0.00	0.00	100.00	100
3/4"	19	0.00		0.00	0.00	100.00	100
1/2"	12.5	0.00	(**)	0.00	0.00	100.00	100
3/8"	9.5	6.82	()	7.85	7.85	92.15	92
#4	4.75	0.00		0.00	7.85	92.15	92
#10	2	1.34		1.54	9.39	90.61	91
#20	0.85	3.83	(**)	4.41	13.80	86.20	86
#40	0.425	9.03		10.39	24.19	75.81	76
#60	0.25	9.54		10.98	35.17	64.83	65
#100	0.15	9.05		10.42	45.59	54.41	54
#140	0.106	6.63		7.63	53.22	46.78	47
#200	0.075	5.02		5.78	58.99	41.01	41
Pan	-	35.63		41.01	100.00	-	-


Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	AA	Date	3/24/23	Checked By	AES	Date	3/26/23
page 2 of 2		DCN: CT-S73T, DATE 2/25/22, RE	V. 1				

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-017 Boring No.: Depth (ft): Sample No.: Soil Color: B-651 42-44 S-22 Brown

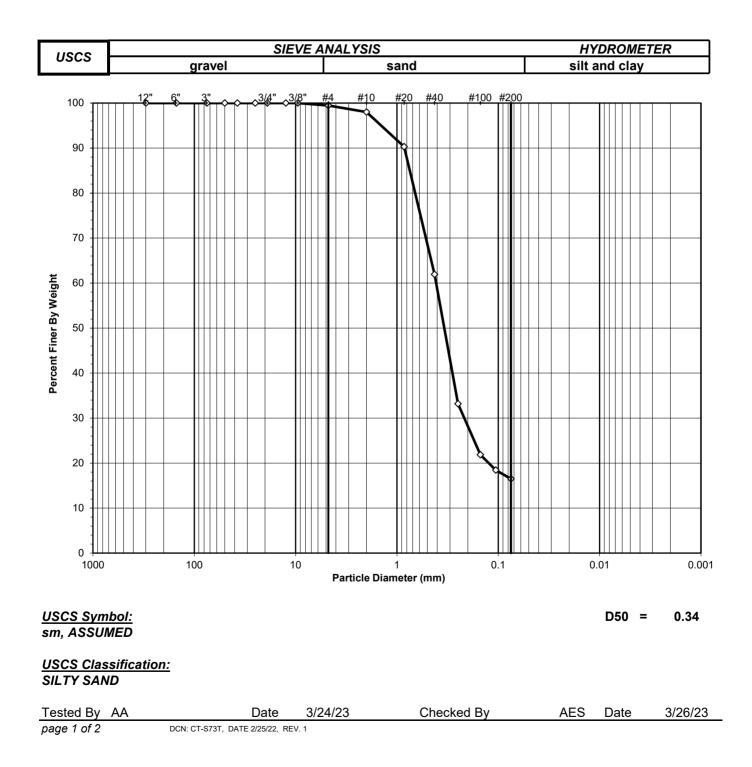
ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-017

Boring No.:	B-651
Depth (ft):	42-44
Sample No.:	S-22
Soil Color:	Brown

Moisture C	ontent of Passi	ing 3/4" Material	Mois	ture Content of Retained 3	/4" Material	
			100			
Tare No.:			483	Tare No.:		NA
Wt. of Tare	e & Wet Sample	e (g):	329.61	Weight of Tare & Wet Sam	nple (g):	NA
Wt. of Tare	e & Dry Sample	e (g):	310.22	Weight of Tare & Dry Sam	ple (g):	NA
Weight of	Tare (g):		97.75	Weight of Tare (g):		NA
Weight of	Water (g):		19.39	Weight of Water (g):		NA
Weight of	Dry Soil (g):		212.47	Weight of Dry Soil (g):		NA
Moisture	Content (%):		9.1	Moisture Content (%):		0.0
Dry Weigh	Dry Weight of Sample (g):			Total Dry Weight of Sampl	212.47	
Tare No. (Sub-Specimen))	483	Wet Weight of +3/4" Sample (g):		0.00
Wt. of Tar	e & Wet Sub-Sp	pecimen (g):	329.61	Dry Weight of + 3/4" Sample (g):		0.00
Weight of	Tare (g):		97.75	Dry Weight of - 3/4" Sample (g):		212.47
Sub-Speci	men Wet Weigl	ht (g):	231.86	Dry Weight -3/4" +3/8" Sar	nple (g):	76.49
Tare No. (-3/8" Sub-Speci	imen):	NA	Dry Weight of -3/8" Sample	e (g):	135.98
Wt. of Tar	e & Wet -3/8" S	ub-Specimen (g):	NA	J - Factor (% Finer than 3/4	4"):	NA
Weight of	Tare (g):		NA	J - Factor (% Finer than 3/	B"):	NA
Sub-Speci	Sub-Specimen -3/8" Wet Weight (g):		NA			
Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)

					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100
6"	150	0.00		0.00	0.00	100.00	100
3"	75	0.00		0.00	0.00	100.00	100
2"	50	0.00	(*)	0.00	0.00	100.00	100
1 1/2"	37.5	0.00		0.00	0.00	100.00	100
1"	25	0.00		0.00	0.00	100.00	100
3/4"	19	0.00		0.00	0.00	100.00	100
1/2"	12.5	53.61	(**)	25.23	25.23	74.77	75
3/8"	9.5	22.88	()	10.77	36.00	64.00	64
#4	4.75	18.68		8.79	44.79	55.21	55
#10	2	23.40		11.01	55.81	44.19	44
#20	0.85	9.80	(**)	4.61	60.42	39.58	40
#40	0.425	13.91		6.55	66.96	33.04	33
#60	0.25	13.30		6.26	73.22	26.78	27
#100	0.15	12.18		5.73	78.96	21.04	21
#140	0.106	7.63		3.59	82.55	17.45	17
#200	0.075	7.00		3.29	85.84	14.16	14
Pan	-	30.08		14.16	100.00	-	-


Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	AA	Date	3/20/23	Checked By	AES	Date	3/20/23
page 2 of 2		DCN: CT-S73T, DATE 2/25/22, RE	V. 1				

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-018 Boring No.: Depth (ft): Sample No.: Soil Color: B-652 8-10 S-05 Brown

ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-018

#20

#40

#60

#100

#140

#200

Pan

0.85

0.425

0.25

0.15

0.106

0.075

-

Boring No.:B-652Depth (ft):8-10Sample No.:S-05Soil Color:Brown

Moisture C	ontent of Pas	sing 3/4" Material		Mois	ture Content of Retained	3/4" Material	
Tare No.:				704	Tare No.:		NA
	e & Wet Samp			0.24	Weight of Tare & Wet S		NA
	e & Dry Samp	le (g):		33.89	Weight of Tare & Dry Sa	ample (g):	NA
Weight of				9.60	Weight of Tare (g):		NA
Weight of				6.35	Weight of Water (g):		NA
Weight of	Dry Soil (g):		24	14.29	Weight of Dry Soil (g):		NA
Moisture (Content (%):		27.2		Moisture Content (%):		0.0
Dry Weigh	t of Sample (g	g):		NA	Total Dry Weight of Sar	nple (g):	244.29
Tare No. (Sub-Specimer	n)		704	Wet Weight of +3/4" Sa	mple (g):	0.00
Wt. of Tare	e & Wet Sub-S	Specimen (g):	40	00.24	Dry Weight of + 3/4" Sa	mple (g):	0.00
Weight of Tare (g):		8	9.60	Dry Weight of - 3/4" Sample (g):		244.29	
Sub-Specimen Wet Weight (g):		310.64		Dry Weight -3/4" +3/8" Sample (g):		0.00	
Tare No. (-3/8" Sub-Specimen):		NA		Dry Weight of -3/8" Sample (g):		244.29	
Wt. of Tare & Wet -3/8" Sub-Specimen (g):		Sub-Specimen (g):	NA		J - Factor (% Finer than 3/4"):		NA
Weight of Tare (g):			NA	J - Factor (% Finer than	3/8"):	NA	
Sub-Speci	men -3/8" We	t Weight (g):		NA			
Sieve	Sieve	Weight of Soil		Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	0.00	(**)	0.00	0.00	100.00	100.0
3/8"	9.5	0.00	()	0.00	0.00	100.00	100.0
#4	4.75	1.37		0.56	0.56	99.44	99.4
#10	2	3.52		1.44	2.00	98.00	98.0

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

(**)

18.82

69.27

70.30

27.62

8.39

4.67

40.33

Tested By	AA	Date	3/24/23	Checked By	AES	Date	3/26/23
page 2 of 2		DCN: CT-S73T, DATE 2/25/22, RE	V. 1				

7.70

28.36

28.78

11.31

3.43

1.91

16.51

9.71

38.06

66.84

78.14

81.58

83.49

100.00

90.29

61.94

33.16

21.86

18.42

16.51

-

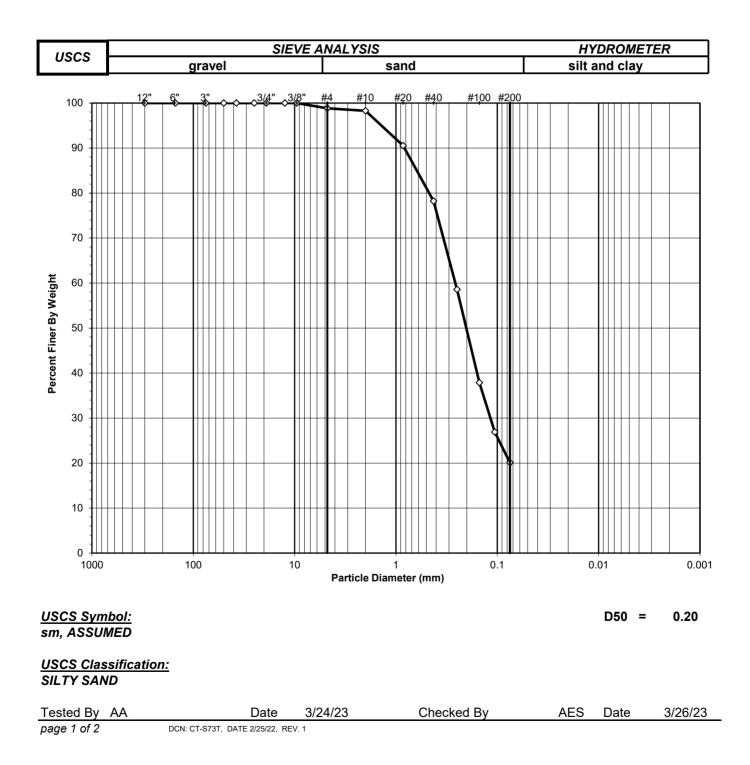
90.3

61.9

33.2

21.9

18.4


16.5

-

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-019 Boring No.: Depth (ft): Sample No.: Soil Color: B-652 18-20 S-10 Brown

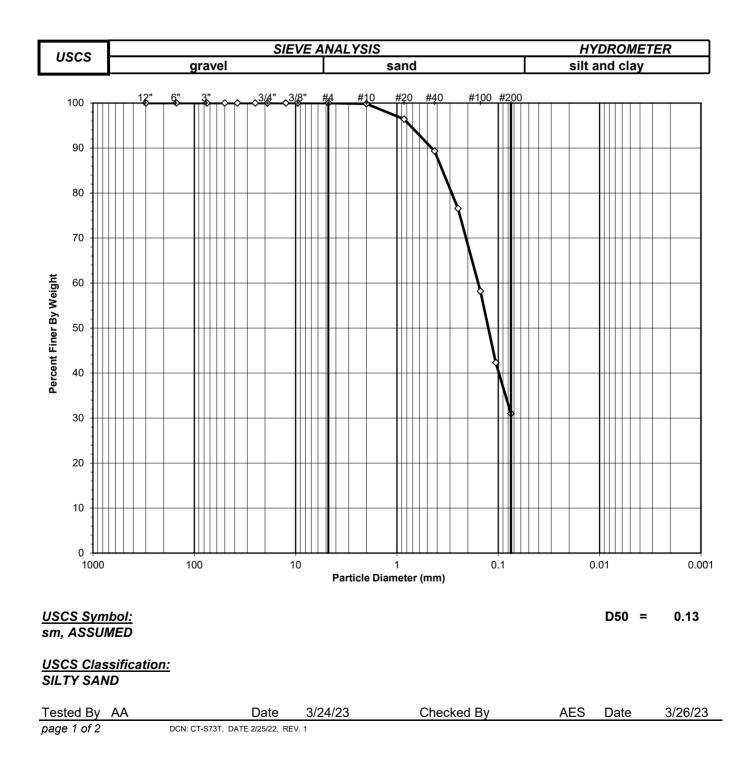
ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-019

Boring No.:	B-652
Bonny No	D-002
Depth (ft):	18-20
Sample No.:	S-10
Soil Color:	Brown

Moisture Content of Passing 3/4" Material Moisture Content of Retained 3/4" Material					Material
Tare No.:			430	Tare No.:	NA
Wt. of Tar	e & Wet Sample	(q):	363.72	Weight of Tare & Wet Sample	
	e & Dry Sample		310.65	Weight of Tare & Dry Sample ((0)
Weight of		(0)	99.78	Weight of Tare (g):	NA
Ŭ	Water (g):		53.07	Weight of Water (g):	NA
Ŭ	Dry Soil (g):		210.87	Weight of Dry Soil (g):	NA
Moisture	Content (%):		25.2	Moisture Content (%):	0.0
Dry Weigh	t of Sample (g):		NA	Total Dry Weight of Sample (g): 210.87
Tare No. (Sub-Specimen)		430	Wet Weight of +3/4" Sample (
	e & Wet Sub-Sp	ecimen (g):	363.72		
Weight of			99.78	Dry Weight of - 3/4" Sample (g	
-	imen Wet Weigh	ıt (g):	263.94	Dry Weight -3/4" +3/8" Sample (g):	
	-3/8" Sub-Specir		NA	Dry Weight of -3/8" Sample (g)	
		ub-Specimen (g):	NA	J - Factor (% Finer than 3/4"):	
Weight of Tare (g):		NA	J - Factor (% Finer than 3/8"):	NA NA	
	imen -3/8" Wet V	Veight (g):	NA	· · · ·	
Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent Accumulated
Size	Opening	Retained	Retained	Percent	Finer Percent

01010	01010	Weight of Ool		reroent	rioounnalatea	1 crocito	Accountant Cou
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100
6"	150	0.00		0.00	0.00	100.00	100
3"	75	0.00		0.00	0.00	100.00	100
2"	50	0.00	(*)	0.00	0.00	100.00	100
1 1/2"	37.5	0.00		0.00	0.00	100.00	100
1"	25	0.00		0.00	0.00	100.00	100
3/4"	19	0.00		0.00	0.00	100.00	100
1/2"	12.5	0.00	(**)	0.00	0.00	100.00	100
3/8"	9.5	0.00	()	0.00	0.00	100.00	100
#4	4.75	2.47		1.17	1.17	98.83	99
#10	2	1.18		0.56	1.73	98.27	98
#20	0.85	16.28	(**)	7.72	9.45	90.55	91
#40	0.425	25.97		12.32	21.77	78.23	78
#60	0.25	41.45		19.66	41.42	58.58	59
#100	0.15	43.66		20.70	62.13	37.87	38
#140	0.106	23.19		11.00	73.13	26.87	27
#200	0.075	14.31		6.79	79.91	20.09	20
Pan	-	42.36		20.09	100.00	-	-


Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	AA	Date	3/24/23	Checked By	AES	Date	3/26/23
page 2 of 2		DCN: CT-S73T, DATE 2/25/22, REV.	1				

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-020 Boring No.: Depth (ft): Sample No.: Soil Color: B-751 4-6 S-03 Brown

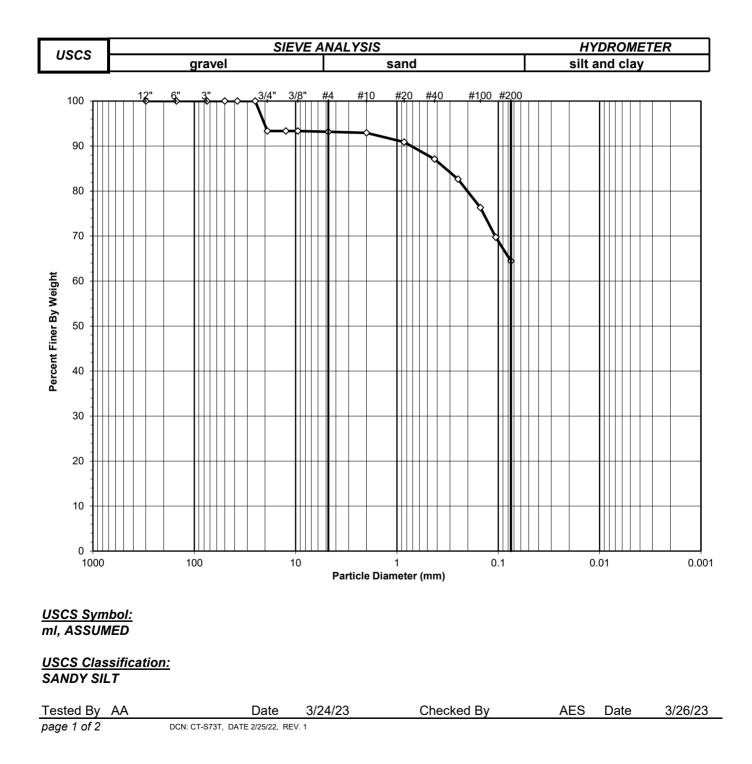
ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-020

Boring No.:	B-751
Depth (ft):	4-6
Sample No.:	S-03
Soil Color:	Brown
-	

Moisture Content of Passing	3/4" Material	Mois	ture Content of Retained 3/4" N	laterial
Tare No.:		494	Tare No.:	NA
Wt. of Tare & Wet Sample (g)		371.80	Weight of Tare & Wet Sample (
Wt. of Tare & Dry Sample (g):		327.88	Weight of Tare & Dry Sample (c	0,
Weight of Tare (g):		99.06	Weight of Tare (g):	NA
Weight of Water (g):		43.92	Weight of Water (g):	NA
Weight of Dry Soil (g):		228.82	Weight of Dry Soil (g):	NA
Moisture Content (%):		19.2	Moisture Content (%):	0.0
Dry Weight of Sample (g):		NA	Total Dry Weight of Sample (g):	228.82
Tare No. (Sub-Specimen)		494 Wet Weight of +3/4" Sample (g):		
Wt. of Tare & Wet Sub-Specin	nen (g):	371.80		
Weight of Tare (g):		99.06		
Sub-Specimen Wet Weight (g):	272.74	Dry Weight -3/4" +3/8" Sample (
Tare No. (-3/8" Sub-Specimen	,	NA	Dry Weight of -3/8" Sample (g):	(0)
Wt. of Tare & Wet -3/8" Sub-S	,	NA	J - Factor (% Finer than 3/4"):	
Weight of Tare (g):	1 (3)	NA J - Factor (% Finer than 3/8"):		NA NA
Sub-Specimen -3/8" Wet Weig	ght (g):	NA	. ,	
Sieve Sieve	Weight of Soil	Percent	Accumulated	Percent Accumulated
Size Opening	Retained	Retained	Percent	Finer Percent
			Detained	Eliza en

01010	01010	weight of oon		reroent	nooumulatou	i crocitti	www.
Size	Opening	Retained		Retained	Percent	Finer	Percent
					Retained		Finer
	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	0.00	(**)	0.00	0.00	100.00	100.0
3/8"	9.5	0.00	()	0.00	0.00	100.00	100.0
#4	4.75	0.00		0.00	0.00	100.00	100.0
#10	2	0.41		0.18	0.18	99.82	99.8
#20	0.85	7.78	(**)	3.40	3.58	96.42	96.4
#40	0.425	16.23		7.09	10.67	89.33	89.3
#60	0.25	29.20		12.76	23.43	76.57	76.6
#100	0.15	42.06		18.38	41.81	58.19	58.2
#140	0.106	36.28		15.86	57.67	42.33	42.3
#200	0.075	25.96		11.35	69.01	30.99	31.0
Pan	-	70.90		30.99	100.00	-	-


Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	AA	Date	3/24/23	Checked By	AES	Date	3/26/23
page 2 of 2		DCN: CT-S73T, DATE 2/25/22, RE	V. 1				

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-021 Boring No.: Depth (ft): Sample No.: Soil Color: B-751 24-26 S-11 Brown

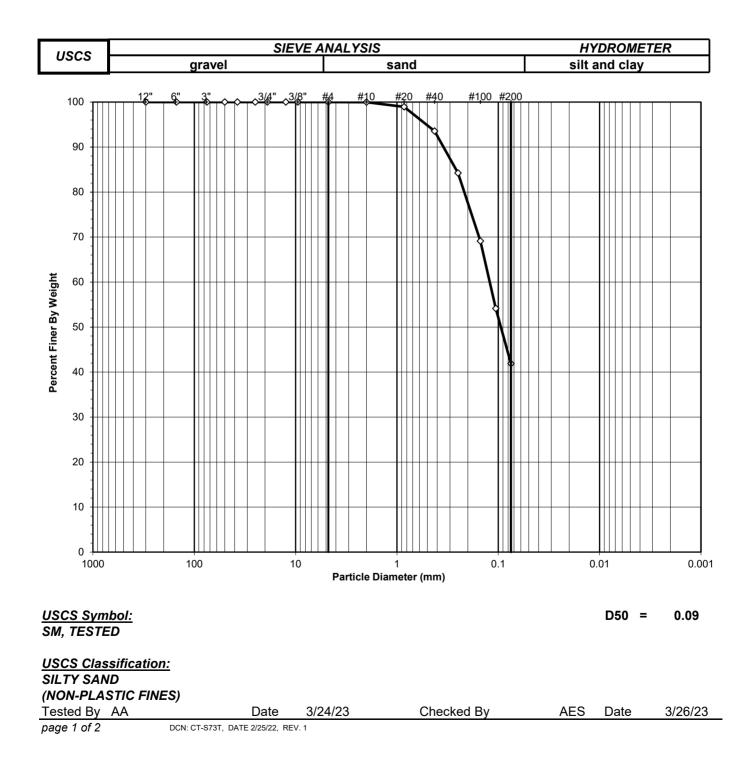
ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-021

Boring No.:	B-751
Depth (ft):	24-26
Sample No.:	S-11
Soil Color:	Brown

Moisture Content of Passing 3/4" Material Moisture Content of Retained 3/4" Material						
Tare No.:			474	Tare No.:		NA
Wt. of Tar	e & Wet Sample	e (g):	357.52	Weight of Tare & Wet S	ample (g):	NA
	e & Dry Sample		306.28	Weight of Tare & Dry Sa		NA
Weight of	• •		98.41	Weight of Tare (g):		NA
Weight of			51.24	Weight of Water (g):		NA
•	Dry Soil (g):		207.87	Weight of Dry Soil (g):		NA
Moisture	Content (%):		24.7	Moisture Content (%):		0.0
Dry Weigh	it of Sample (g):		NA	Total Dry Weight of Sam	ple (g):	207.87
	Sub-Specimen)		474	Wet Weight of +3/4" Sar	17.29	
	e & Wet Sub-Sp		357.52	Dry Weight of + 3/4" Sar	mple (g):	13.87
Weight of			98.41	Dry Weight of - 3/4" San		194.00
	men Wet Weigl	nt (g):	259.11	Dry Weight -3/4" +3/8" S		0.00
	-3/8" Sub-Speci		NA	Dry Weight of -3/8" Sam		194.00
,	•	ub-Specimen (g):	NA	J - Factor (% Finer than		NA
Weight of			NA	J - Factor (% Finer than		NA
	men -3/8" Wet	Weight (g):	NA	,	,	
Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	1 5			Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100
6"	150	0.00	0.00	0.00	100.00	100

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(11111)	(9)		(70)	(70)	(70)	(70)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12"	300	0.00		0.00	0.00	100.00	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6"	150	0.00		0.00	0.00	100.00	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3"	75	0.00		0.00	0.00	100.00	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2"	50	0.00	(*)	0.00	0.00	100.00	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1/2"	37.5	0.00		0.00	0.00	100.00	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1"	25	0.00		0.00	0.00	100.00	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/4"	19	13.87		6.67	6.67	93.33	93
3/8"9.50.00(*)0.006.6793.3393#44.750.320.156.8393.1793#1020.490.247.0692.9493#200.854.28(**)2.069.1290.8891#400.4257.873.7912.9187.0987#600.259.244.4517.3582.6583#1000.1513.146.3223.6776.3376#1400.10613.736.6130.2869.7270#2000.07510.985.2835.5664.4464	1/2"	12.5	0.00	(**)	0.00	6.67	93.33	93
#1020.490.247.0692.9493#200.854.28(**)2.069.1290.8891#400.4257.873.7912.9187.0987#600.259.244.4517.3582.6583#1000.1513.146.3223.6776.3376#1400.10613.736.6130.2869.7270#2000.07510.985.2835.5664.4464	3/8"	9.5	0.00	()	0.00	6.67	93.33	93
#200.854.28(**)2.069.1290.8891#400.4257.873.7912.9187.0987#600.259.244.4517.3582.6583#1000.1513.146.3223.6776.3376#1400.10613.736.6130.2869.7270#2000.07510.985.2835.5664.4464	#4	4.75	0.32		0.15	6.83	93.17	93
#400.4257.873.7912.9187.0987#600.259.244.4517.3582.6583#1000.1513.146.3223.6776.3376#1400.10613.736.6130.2869.7270#2000.07510.985.2835.5664.4464	#10	2	0.49		0.24	7.06	92.94	93
#600.259.244.4517.3582.6583#1000.1513.146.3223.6776.3376#1400.10613.736.6130.2869.7270#2000.07510.985.2835.5664.4464	#20	0.85	4.28	(**)	2.06	9.12	90.88	91
#1000.1513.146.3223.6776.3376#1400.10613.736.6130.2869.7270#2000.07510.985.2835.5664.4464	#40	0.425	7.87		3.79	12.91	87.09	87
#1400.10613.736.6130.2869.7270#2000.07510.985.2835.5664.4464	#60	0.25	9.24		4.45	17.35	82.65	83
#200 0.075 10.98 5.28 35.56 64.44 64	#100	0.15	13.14		6.32	23.67	76.33	76
	#140	0.106	13.73		6.61	30.28	69.72	70
Pan - 133.95 64.44 100.00	#200	0.075	10.98		5.28	35.56	64.44	64
	Pan	-	133.95		64.44	100.00	-	-


Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	AA	Date	3/24/23	Checked By	AES	Date	3/26/23
page 2 of 2		DCN: CT-S73T, DATE 2/25/22, RE	V. 1				

ASTM D6913 / D7928

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-022 Boring No.: Depth (ft): Sample No.: Soil Color: B-751 30-32 S-14 Brown

ASTM D6913-17

Client:Schnabel Engineering, Inc.Client Reference:Cherrystone Dam 2AProject No.:R-2023-070-001Lab ID:R-2023-070-001-022

Boring No.:	B-751
Depth (ft):	30-32
Sample No.:	S-14
Soil Color:	Brown

Moisture Content of Passing 3/4" Material Moisture Content of Retained 3/4" Material						
Tare No.:			368	Tare No.:		NA
Wt. of Tar	e & Wet Sample	e (g):	263.52	Weight of Tare & Wet S	ample (g):	NA
	e & Dry Sample		238.29	Weight of Tare & Dry Sa		NA
Weight of	Tare (g):		110.83	Weight of Tare (g):		NA
Weight of	Water (g):		25.23	Weight of Water (g):		NA
Weight of	Dry Soil (g):		127.46	Weight of Dry Soil (g):		NA
Moisture	Content (%):		19.8	Moisture Content (%):		0.0
Dry Weigh	t of Sample (g)		NA	Total Dry Weight of Sam	ple (g):	127.46
Tare No. (Sub-Specimen)		368	Wet Weight of +3/4" Sar	nple (g):	0.00
Wt. of Tar	e & Wet Sub-Sp	pecimen (g):	263.52	Dry Weight of + 3/4" Sar	nple (g):	0.00
Weight of	Tare (g):		110.83	Dry Weight of - 3/4" San	nple (g):	127.46
Sub-Speci	men Wet Weig	ht (g):	152.69	Dry Weight -3/4" +3/8" S		0.00
	-3/8" Sub-Speci		NA	Dry Weight of -3/8" Sam	ple (g):	127.46
		ub-Specimen (g):	NA	J - Factor (% Finer than		NA
Weight of			NA	J - Factor (% Finer than		NA
Sub-Speci	men -3/8" Wet	Weight (g):	NA			
Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.0
6"	150	0.00	0.00	0.00	100.00	100.0

	(mm)	(g)		(%)	(%)	(%)	(%)
12"	300	0.00		0.00	0.00	100.00	100.0
6"	150	0.00		0.00	0.00	100.00	100.0
3"	75	0.00		0.00	0.00	100.00	100.0
2"	50	0.00	(*)	0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00		0.00	0.00	100.00	100.0
1"	25	0.00		0.00	0.00	100.00	100.0
3/4"	19	0.00		0.00	0.00	100.00	100.0
1/2"	12.5	0.00	(**)	0.00	0.00	100.00	100.0
3/8"	9.5	0.00	()	0.00	0.00	100.00	100.0
#4	4.75	0.00		0.00	0.00	100.00	100.0
#10	2	0.02		0.02	0.02	99.98	100.0
#20	0.85	1.34	(**)	1.05	1.07	98.93	98.9
#40	0.425	6.88		5.40	6.46	93.54	93.5
#60	0.25	11.87		9.31	15.78	84.22	84.2
#100	0.15	19.28		15.13	30.90	69.10	69.1
#140	0.106	19.09		14.98	45.88	54.12	54.1
#200	0.075	15.62		12.25	58.14	41.86	41.9
Pan	-	53.36		41.86	100.00	-	-

Notes : (*) The + 3/4" sieve analysis is based on the Total Dry Weight of the Sample (**) The - 3/4" and - 3/8" sieve analysis is based on the Weight of the Dry Specimen

Tested By	AA	Date	3/24/23	Checked By	AES	Date	3/26/23
page 2 of 2		DCN: CT-S73T, DATE 2/25/22, RE	V. 1				

ATTERBERG LIMITS

ASTM D 4318-17

Client: Client Reference: Project No.: Lab ID: Schnabel Engineering, Inc. Cherrystone Dam 2A R-2023-070-001 R-2023-070-001-022

Boring No.: Depth (ft): Sample No.: Color:

B-751 30-32 S-14 Brown (Mlnus No. 40 sieve material)

As Received Water Content

Water Content (%)

Tare Number	368
Wt. of Tare & Wet Sample (g)	263.52
Wt. of Tare & Dry Sample (g)	238.29
Weight of Tare (g)	110.83
Weight of Water (g)	25.23
Weight of Dry Sample (g)	127.46

19.8

NON - PLASTIC MATERIAL

Tested By DO Date 3/14/23 Checked By AES Date 3/15/23

page 1 of 1 DCN: CT-S4C, DATE: 4/27/17, REVISION : 4e

PINHOLE DISPERSION TEST

geotechnical & geosynthetic testing

ASTM D4647-13

Client Client Reference		l Engineering, Inc. one Dam 2A	
Project No.	R-2023-0	070-002	
Lab ID	R-2023-0	070-002-001	
Tare No.		3032	
Wgt.Tare + Wet Specim	nen (gm)	22.12	
Wgt.Tare + Dry Specim	en (gm)	20.13	
Weight of Tare (gm)		8.16	
Weight of Water (gm)		1.99	
Weight of Dry Specime	n (gm)	11.97	
0 7 1	(0)		
Water Content (%)		16.6	
Dry Density (pcf)		108.7	
Final Hole Diam (mm)		1.0	
Classification		ND2	

Sample No. S-12 Visual Red Sandy Clay **Turbidity** VD - Very Dark D - Dark MD - Moderately Dark SD - Slightly Dark BV - Barely Visible

CC - Completely Clear

А

B-651

22-24

Boring No.

Depth (ft)

Method

Clock Head Flow Flow Rate Turbidity Turbidity Remarks Time (ml) (ml/sec) from Side from Top (sec) 16:00 2" 11.5 30 0.383 ΒV CC 2" 30 СС СС 16:05 11.5 0.383 Slight Change - Run to 10 Minutes 16:10 2" 9.5 30 0.317 CC СС No Change - Increase Head 7" 16:11 10.5 10 1.050 MD MD 7" 1.050 CC СС 16:15 10.5 10 Slightly Lighter - Increase Head 16:16 15" 18 10 1.800 SD SD 15" 16:20 17.5 10 1.750 СС CC Slightly Lighter - Increase Head 40" 16:21 19 5 3.800 ΒV ΒV 16:25 40" 20 5 4.000 ΒV ΒV No Change - End Test

Note: For complete description of classification criteria, please refer to ASTM D4647.

5/30/23

Tested By: DCN: JG Date:

Checked By: KC

Date: 5/31/23